Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lections ИТУ новые.doc
Скачиваний:
7
Добавлен:
09.11.2019
Размер:
8.29 Mб
Скачать

Характеристики

Интерфейс — набор, состоящий из линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил обмена. Современные накопители могут использовать интерфейсы ATA (AT Attachment, он же IDE — Integrated Drive Electronic, он же Parallel ATA), (EIDE), Serial ATA, SCSI (Small Computer System Interface), SAS, FireWire, USB, SDIO и Fibre Channel.

Ёмкость (англ. capacity) — количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 1000 Гб. В отличие от принятой в информатике (случайно) системе приставок, обозначающих кратную 1024 величину (кило=1024, мега=1 048 576 и т. д.; позже для этого были не очень успешно введены двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются кратные 1000 величины. Так, напр., «настоящая» ёмкость жёсткого диска, маркированного как «200 Гб», составляет 186,2 ГиБ.

Физический размер (форм-фактор) — почти все современные накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках. Другие распространённые форматы — 1,8 дюйма, 1,3 дюйма и 0,85 дюйма

Время произвольного доступа (англ. random access time) — от 3 до 15 мс, как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс[3]), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5 [4]).

Скорость вращения шпинделя (англ. spindle speed) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об./мин. (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability) — определяется как среднее время наработки на отказ (Mean Time Between Failures, MTBF). Cм. также Технология SMART. (S.M.A.R.T. (англ. Self Monitoring Analysing and Reporting Technology) — технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя.)

Количество операций ввода-вывода в секунду — у современных дисков это около 50 оп./сек при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии — важный фактор для мобильных устройств.

Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже.

Сопротивляемость ударам (англ. G-shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки g во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate):

  • Внутренняя зона диска: от 44,2 до 74,5 Мб/с

  • Внешняя зона диска: от 74,0 до 111,4 Мб/с

Приложение 8

Видеокарта. История.

Одним из первых графических адаптеров для IBM PC стала плата MDA (Monochrome Display Adapter) в 1981 году, которая работала только в текстовом режиме с разрешением 25х80 символов (физически 720x350 точек) и имела пять атрибутов текста: обычный, яркий, инверсный, подчёркнутый и мигающий. Никакой цветовой или графической информации он передавать не мог, и то, какого цвета будут буквы, определялось моделью использовавшегося монитора, обычно они были чёрно-белыми, янтарными или изумрудными. Фирма Hercules в 1982 году выпустила дальнейшее развитие адаптера MDA, видеоадаптер HGC (Hercules Graphics Controller - графический адаптер Геркулес), который имел графическое разрешение 720х348 точек и поддерживал две графические страницы. Но он всё ещё не позволял работать с цветом.

Первой цветной графической платой стала CGA (Color Graphics Adapter), выпущенная IBM и ставшая основой для последующих стандартов видеокарт. Она могла работать либо в текстовом режиме с разрешениями 40x25 и 80x25 (матрица символа — 8x8), либо в графическом с разрешениями 320x200 или 640x200. В текстовых режимах доступно 256 атрибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атрибут мигания), в графическом режиме 320x200 было доступно четыре палитры по четыре цвета каждая, режим высокого разрешения 640x200 был монохромным. В развитие этой карты появился EGA (Enhanced Graphics Adapter) — улучшенный графический адаптер, с расширенной до 64 цветов палитрой, и промежуточным буфером. Было улучшено разрешение до 640x350, в результате добавился текстовый режим 80x43 при матрице символа 8x8. Для режима 80x25 использовалась большая матрица — 8x14, одновременно можно было использовать 16 цветов, цветовая палитра была расширена до 64 цветов. Графический режим так же позволял использовать при разрешении 640x350 16 цветов из палитры в 64 цвета. Был совместим с CGA и MDA.

Стоит заметить, что интерфейсы с монитором всех этих типов видеоадаптеров были цифровые, MDA и HGC передавали только светится или не светится точка и ещё дополнительный сигнал яркости для атрибута текста «яркий», аналогично CGA по трём каналам (красный, зелёный, синий) передавал основной видеосигнал, и мог дополнительно передавать сигнал яркости (всего получалось 16 цветов), EGA имел по две линии передачи на каждый из основных цветов, то есть каждый основной цвет мог отображаться с полной яркостью, 2/3, или 1/3 от полной яркости, что и давало в сумме максимум 64 цвета.

В ранних моделях компьютеров от IBM PS/2, появляется новый графический адаптер MCGA (Multicolor Graphics Adapter — многоцветный графический адаптер). Текстовое разрешение было поднято до 640x400, что позволило использовать режим 80x50 при матрице 8x8, а для режима 80x25 использовать матрицу 8x16. Количество цветов увеличено до 262144 (64 уровня яркости по каждому цвету), для совместимости с EGA в текстовых режимах была введена таблица цветов, через которую выполнялось преобразование 64-цветного пространства EGA в цветовое пространство MCGA. Появился режим 320x200x256, где каждый пиксел на экране кодировался соответствующим байтом в видеопамяти, никаких битовых плоскостей не было, соответственно с EGA осталась совместимость только по текстовым режимам, совместимость с CGA была полная. Из-за огромного количества яркостей основных цветов возникла необходимость использования уже аналогового цветового сигнала, частота строчной развертки составляла уже 31,5 KГц.

Потом IBM пошла ещё дальше и сделала VGA (Video Graphics Array — графический видео массив), это расширение MCGA совместимое с EGA и введённое в средних моделях PS/2. Это фактический стандарт видеоадаптера с конца 80-х годов. Добавлены текстовое разрешение 720x400 для эмуляции MDA и графический режим 640x480, с доступом через битовые плоскости. Режим 640x480 замечателен тем, что в нём используется квадратный пиксел, то есть соотношение числа пикселов по горизонтали и вертикали совпадает со стандартным соотношением сторон экрана — 4:3. Дальше появился IBM 8514/a с разрешениями 640x480x256 и 1024x768x256, и IBM XGA с текстовым режимом 132x25 (1056x400) и увеличенной глубиной цвета (640x480x65K).

С 1991 года появилось понятие SVGA (Super VGA — «сверх» VGA) — расширение VGA с добавлением более высоких режимов и дополнительного сервиса, например возможности поставить произвольную частоту кадров. Число одновременно отображаемых цветов увеличивается до 65'536 (High Color, 16 бит) и 16'777'216 (True Color, 24 бита), появляются дополнительные текстовые режимы. Из сервисных функций появляется поддержка VBE (VESA BIOS Extention — расширение BIOS стандарта VESA). SVGA воспринимается как фактический стандарт видеоадаптера где-то с середины 1992 года, после принятия ассоциацией VESA (Video Electronics Standart Association — ассоциация стандартизации видео-электроники) стандарта VBE версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.

Графический пользовательский интерфейс, появившийся во многих операционных системах, стимулировал новый этап развития видеоадаптеров. Появляется понятие «графический ускоритель» (graphics accelerator). Это видеоадаптеры, которые производят выполнение некоторых графических функций на аппаратном уровне. К числу этих функций относятся, перемещение больших блоков изображения из одного участка экрана в другой (например при перемещении окна), заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора и т. п. Прямым толчком к развитию столь специализированного устройства явилось то, что графический пользовательский интерфейс несомненно удобен, но его использование требует от центрального процессора немалых вычислительных ресурсов, и современный графический ускоритель как раз и призван снять с него львиную долю вычислений по окончательному выводу изображения на экран.

Приложение 9

История создния звуковой карты

Поскольку IBM-PC проектировался не как мультимедийная машина, а инструмент для решения серьёзных научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер — был звук встроенного динамика бипера, сообщавший о неисправностях. Хотя на компьютерах фирмы Apple звук присутствовал изначально.

В 1988 году фирма Creative Labs выпустила устройство Creative Music System (С/MS, позднее также продавалась под названием Game Blaster) на основе двух микросхем звукогенератора Philips SAA 1099, каждая из которых могла воспроизводить по 6 голосов одновременно. Примерно в это же время, AdLib выпустила свою карту, одноимённую с названием фирмы, на основе микросхемы YM3812 фирмы Yamaha. Данный синтезатор для генерации звука использовал принцип частотной модуляции (FM, frequency modulation). Данный принцип позволял получить более естественное звучание инструментов, чем у Game Blaster.

Вскоре Creative выпустили карту на той же микросхеме, полностью совместимую с AdLib, но превосходящую её по качеству звучания. Эта плата стала основой стандарта Sound Blaster, который в 1991 году Microsoft включила в стандарт Multimedia PC (MPC). Однако эти карты имели ряд недостатков: искусственное звучание инструментов и большие объёмы файлов, одна минута качества AUDIO-CD занимала порядка 10 Мегабайт.

Одним из методов сокращения объёмов, занимаемых музыкой, является MIDI (Musical Instrument Digital Interface) — способ записи команд, посылаемых инструментам. MIDI-файл (обычно это файл с расширением mid) содержит ссылки на ноты. Когда MIDI-совместимая звуковая карта получает эту ссылку, она ищет необходимый звук в таблице (Wave Table). Стандарт General MIDI описывает около 200 звуков. Карты, поддерживающие этот стандарт обычно имеют память, в которой хранятся звуки, либо используют для этого память компьютера. Одной из первых wavetables-карт была Gravis Ultrasound, получившая в России прозвище «Гусь» (от сокращённого названия GUS). Creative, стремясь упрочить своё положение на рынке выпустила собственный аудиопроцессор EMU8000 (EMU8K), и музыкальную плату на его основе Sound Blaster AWE32, которая была несомненно лучшей картой того времени. «32» — это количество голосов MIDI-синтезатора в карточке.

С возрастанием мощности процессоров, постепенно стала отмирать шина ISA, на которой работали все предыдущие звуковые карты, многие производители переключились на выпуск карты для шины PCI. В 1998 году компания Creative вновь делает широкий шаг в развитии звука и выпуском карты Sound Blaster Live! на аудиопроцессоре EMU10K, устанавливает новый стандарт для IBM PC, который остаётся, в усовершенствованном виде, и по сей день.

1 Приожение 1

2 Приложение 2

3 Приложение 3

4 Приложение 4

5 Набор кнопок (клавиш), предназначенных для управления каким-либо устройством или для ввода информации. Существует два основных вида клавиатур: музыкальные и алфавитно-цифровые.

6 Корпус, в котором находятся основные функциональные компоненты персонального компьютера. Корпуса обычно созданы из деталей на основе стали, алюминия и пластика, также иногда используются такие материалы как дерево или органическое стекло.

7 Приложение 5

8 Приложение 6

9 Приложение 7

10 Компакт-диск был создан в 1979 году компаниями Philips и Sony. На Philips разработали общий процесс производства, основываясь на своей более ранней технологии лазерных дисков. Sony, в свою очередь, использовала собственный метод записи PCM — Pulse Code Modulation, использовавшийся ранее в цифровых профессиональных магнитофонах. В 1982 году началось массовое производство компакт-дисков, на заводе в городе Лангенхагене под Ганновером, в Германии. Значительный вклад в популяризацию компакт-дисков внесли Microsoft и Apple Computer. Джон Скалли, тогдашний CEO Apple Computer, в 1987 году сказал, что компакт-диски произведут революцию в мире персональных компьютеров.

Существует версия о том, что компакт-диск изобрели не Philips и Sony, а американский физик Джеймс Рассел, работавший в компании Optical Recording. Уже в 1971 году он продемонстрировал свое изобретение для хранения данных. Делал он это для «личных» целей, желая предотвратить царапание своих виниловых пластинок иглами звукоснимателей. Спустя восемь лет подобное устройство было «независимо» изобретено компаниями Philips и Sony.

11 Приложение 8

12 широкий класс дисциплин и областей деятельности, относящихся к технологиям управления и обработки данных, в том числе, с применением вычислительной техники.

13 Международная организация по стандартизации (International Organization for Standardization, ISO) — международная организация, занимающаяся выпуском стандартов. На сегодняшний день в состав ИСО входят 157 стран своими национальными организациями по стандартизации. Россию представляет Федеральное Агентство по техническому регулированию и метрологии в качестве комитета — члена ИСО. Всего в составе ИСО более 80 комитетов-членов. Кроме комитетов-членов членство в ИСО может иметь статус членов-корреспондентов, которыми являются организации по стандартизации развивающихся государств. Категория член-абонент введена для развивающихся стран. Комитеты-члены имеют право принимать участие в работе любого технического комитета ИСО, голосовать по проектам стандартов, избираться в состав Совета ИСО и быть представленными на заседаниях Генеральной ассамблеи. Члены-корреспонденты (их 25) не ведут активной работы в ИСО, но имеют право на получение информации о разрабатываемых стандартах. Члены-абоненты уплачивают льготные взносы, имеют возможность быть в курсе международной стандартизации.

14 Система связи между двумя или более компьютерами. Для передачи информации могут быть использованы различные физические явления, как правило — различные виды электрических сигналов или электромагнитного излучения.

15 Процесс печати называется вывод на печать, а получившийся документ — распечатка или твёрдая копия

16 Приложение 9

17 Строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации

18 История создания: В 1857 году флорентийский аббат Джованни Казелли (Giovanni Caselli) изобрёл прибор для передачи изображения на расстояние, названный впоследствии пантелеграф. Передаваемая картинка наносилась на барабан токопроводящими чернилами и считывалась с помощью иглы.

В 1902 году, немецким физиком Артуром Корном (Arthur Korn) была запатентована технология фотоэлектрического сканирования, получившая впоследствии название телефакс. Передаваемое изображение закреплялось на прозрачном вращающемся барабане, луч света от лампы, перемещающейся вдоль оси барабана, проходил сквозь оригинал и через расположенные на оси барабана призму и объектив попадал на селеновый фотоприёмник. Эта технология до сих пор применяется в барабанных сканерах.

В дальнейшем, с развитием полупроводников, усовершенствовался фотоприёмник, был изобретён планшетный способ сканирования, но сам принцип оцифровки изображения остается почти неизменным.

19 Одновременное использование различных форм представления информации и ее обработки в едином объекте-контейнере. Например, в одном объекте-контейнере (англ. container) может содержаться текстовая, аудиальная, графическая и видео информация, а также, возможно, способ интерактивного взаимодействия с ней. Термин мультимедиа также, зачастую, используется для обозначения носителей информации, позволяющих хранить значительные объемы данных и обеспечивать достаточно быстрый доступ к ним (первыми носителями такого типа были CD-ROM).

48

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]