- •Спинной мозг (анатомо-физиологические и неврологические аспекты)
- •Введение
- •Глава 1. Морфологические особенности развития и анатомо-физиологические особенности строения спинного мозга
- •1.1. Спинной мозг – medulla spinalis
- •Внешняя форма спинного мозга
- •1.1.2. Внутреннее расположение частей спинного мозга
- •1.2. Оболочки спинного мозга Спинной мозг окружен тремя оболочками: твёрдой – dura mater spinalis, паутинной – arachnoidea spinalis и мягкой – pia mater spinalis.
- •1.2.1.Твёрдая оболочка спинного мозга (dura mater spinalis)
- •1.2.2. Паутинная оболочка спинного мозга (arachnoidea spinalis)
- •1.3. Кровоснабжение спинного мозга
- •1.3.1. Система кровоснабжения спинного мозга по протяжению
- •1.3.2. Система кровоснабжения спинного мозга по поперечнику
- •1.4. Двигательные центры спинного мозга
- •1.4.1. Нервная регуляция позы и движений: общие положения
- •1.4.2. Спинальные двигательные рефлексы. Элементы рефлекторной дуги; время рефлекса
- •1.4.3. Рефлекторная дуга
- •1.4.4. Полисинаптические рефлексы
- •1.4.5. Проприоспинальная система и функциональные возможности изолированного спинного мозга
- •1.4.6. Спинальные двигательные автоматизмы
- •Спинальные двигательные автоматизмы:
- •1.5. Проводниковая функция спинного мозга
- •1.5.1. Проводящие пути осознанной чувствительности
- •1.1. 5.1. Экстралемнисковая сенсорная система
- •1.5.1.2. Лемнисковая сенсорная система
- •1.5.1.2.1. Нео-спинно-таламический тракт (спинномозговая петля)
- •1.5.1.2.2. Задние канатики (синонимы: fasciculus gracilis, fasciculus cuneatus, тонкий и клиновидный пучки, пучки Голля и Бурдаха, дорсо-лемнисковая система, система петли, медиальный лемниск)
- •1.5.1.2.3. Спинно-цервикальный тракт (спинно-шейно-таламический тракт, латеральный тракт Морина)
- •1.5.2. Проводящие пути неосознанной чувствительности
- •1.5.2.1. Прямые спинно-мозжечковые тракты
- •1.5.2.1.1. Передний спинно-мозжечковый тракт (tr. Spinocerebellaris ventralis, пучок Говерса) и ростральный спинно-мозжечковый тракт (tr. Spinocerebellaris rostralis)
- •1.5.2.1.2. Задний спинно-мозжечковый тракт (tr. Spinocerebellaris dorsalis, пучок Флексига) и клиновидно-мозжечковый тракт (tr. Cuneocerebellaris)
- •1.5.2.2. Непрямые спинно-мозжечковые тракты
- •1.5.2.3. Спинно-тектальный тракт
- •1.5.3.Моторные проводящие пути
- •1.5.3.1.2. Вестибулоспинальный тракт (преддверно-спинномозговой тракт, tr. Vestibulospinalis, пучок Левенталя, fasc. Lowenthali)
- •1.5.3.2.2. Кортикоспинальный тракт передний и боковой (trr. Corticospinalis anterior et lateralis, пирамидный тракт, корково-спинномозговой тракт, кортико-мускулярный тракт, корково-мышечный тракт)
- •1.5.3.2.3. Кортикобульбарный тракт (корково-ядерный тракт, tr.Corticonuclearis, tr. Corticobulbaris)
- •2.3. Тектоспинальный тракт (tr. Tectospinalis, покрышечно-спинномозговой)
- •1.5.3.4. Тегменто-спинальный тракт
- •Глава 2. Синдромы поражения проводящих путей на уровне спинного мозга
- •2.1. Синдром полного поперечного поражения спинного мозга
- •2.2. Синдромы поражения серого вещества спинного мозга
- •Синдром поражения переднего рога
- •Синдром поражения заднего рога
- •Синдром поражения передней серой спайки
- •Синдром поражения бокового рога
- •2.3. Синдромы поражения белого вещества спинного мозга
- •Синдром поражения задних канатиков
- •Синдром поражения бокового канатика
- •2.4. Синдром броун – секара (латеральная гемисекция спинного мозга)
- •2.5. Синдром поражения вентральной половины спинного мозга (вентральная гемисекция)
- •2.5.1.Синдром Станиловского – Танона
- •2.5.2.Синдром Преображенского
- •2.6. Синдром поражения дорсальной половины спинного мозга (дорсальная гемисекция)
- •2.8. Болезнь и синдром бокового амиотрофического склероза (бас)
- •2.9. Синдром поражения корешков конского хвоста
- •2.10. Синдромы нарушения проведения в периферической нервной системе
- •Глава 3. Заболевания спинного мозга
- •3.1.Клинические синдромы поражения спинного мозга при остеохондрозе позвоночника
- •3.1.1. Поясничная компрессионная миелопатия
- •3.1.2. Вертеброгенные васкулярные миелоишемии
- •3.1.2.1.Поражение радикуломедуллярных артерий шейного утолщения
- •3.1.2.2.Поражение большой передней радикуломедуллярной артерии Адамкевича
- •3.1.2.3.Поражение нижней дополнительной радикуломедуллярной артерии
- •3.1.2.4.Поражение задней спинальной артерии
- •3.1.2.5.Поражение спинного мозга, обусловленное нарушением венозного кровообращения
- •3.2.Наследственные заболевания центральной нервной системы с преимущественным поражением спинного мозга
- •3.2.1. Болезнь фридрейха
- •Наследственная спастическая атаксия
- •3.2.3.Наследственные денервационные спинальные амиотрофии
- •3.2.3.1. Спинальные мышечные атрофии детского возраста
- •3.2.3.1.1. Спинальная мышечная атрофия детского возраста, тип I
- •3.2.3.1.2. Спинальная мышечная атрофия детского возраста, тип II (промежуточный вариант)
- •*.1.1.3. Спинальная мышечная атрофия детского возраста, тип III (болезнь Кугельберга − Веландера)
- •3.2.3.1.4. Спинальные мышечные атрофии с поздним дебютом
- •3.2.3.1.5. Х-сцепленная бульбарная спинальная мышечная атрофия (болезнь Кеннеди)
- •3.3.Инфекционные заболевания спинного мозга
- •3.3.1. Полиомиемит и полиомиелитоподобные заболевания
- •3.4. Опухоли спинного мозга
- •Опухоли позвоночника
- •Опухоли спинного мозга в детском возрасте
- •Список литературы
- •Оглавление Введение 3
- •Глава 1. Морфологические особенности развития и анатомо-физиологические
- •Глава 2. Синдромы поражения проводящих путей на уровне спинного мозга 47
- •Глава 3. Заболевания спинного мозга 59
- •185640, Петрозаводск, пр. Ленина, 33
1.4.4. Полисинаптические рефлексы
За исключением моносинаптического рефлекса растяжения и дисинаптической тормозной рефлекторной дуги волокон Ib, все рефлекторные дуги включают два или более последовательно связанных центральных нейронов, т.е. являются полисинаптическими.
Рецептор такой дуги часто расположен не в той части тела, где эффектор. Примерами служат вегетативные рефлексы, дуги которых заканчиваются эффекторами вегетативной нервной системы и полисинаптнческие соматические рефлексы со скелетными мышцами в качестве эффекторов. Последним принадлежит главная роль при любых движениях, но особенно при избегании повреждающих воздействий (оборонительные рефлексы).
Свойства полисинаптических рефлексов. В качестве примера полисинаптических рефлексов рассмотрим кашлевой, относящийся к типичным оборонительным. Как известно, ощущение слабого «першения» или «царапания» в горле вызывает кашель, но не сразу, а через короткое время. Задержка связана с тем, что при полисинаптических рефлексах подпороговые стимулы суммируются до надпорогового. Такая суммация представляет собой центральный процесс: она происходит на уровне интернейронов и мотонейронов, а не периферических рецепторов. Неприятные субъективные ощущения (першение, царапание), предшествующие кашлю, убедительно свидетельствуют об опережающем возбуждении рецепторов, ответственных за развитие рефлекса.
По мере увеличения интенсивности стимуляции период времени между началом раздражения (першением) и рефлекторным ответом (кашлем) укорачивается. Иными словами, время рефлекса полисинаптической дуги зависит от интенсивности стимуляции: чем она сильнее, тем раньше активируются эффекторы. Уменьшение времени рефлекса объясняется тем, что при росте количества и усилении активности реагирующих на стимул периферических рецепторов быстрее достигается надпороговый уровень возбуждения центральных органов, т. е. время рефлекса уменьшается в первую очередь благодаря временному и пространственному облегчению.
Интенсивность стимуляции влияет и на силу ответа − от легкого покашливания до продолжительного сильного кашля. Это также составляет характерную особенность полисинаптических двигательных рефлексов. Усиление ответа основано на постепенном вовлечении все новых групп мышц; такой процесс назван иррадиацией.
Пластичность ответа при полисинаптических рефлексах с пространственно разделенными рецепторами и эффекторами проявляется и в ряде других особенностей, включая «локальный знак», привыкание (габитуацию), сенситизацию и кондиционирование. Термином «локальный знак» обозначают свойство, иллюстрируемое реакцией на болевое раздражение ноги: степень сокращения сгибателей бедра, колена и стопы зависит от места стимуляции. Привыкание представляет собой ослабление рефлекторного ответа на неболевой и неповреждающий стимул (например, поглаживание кожи живота), который часто повторяется в одном и том же месте с одинаковой интенсивностью. Ослабление ответа не связано с изменениями возбудимости участвующих в рефлексе рецепторов, мотонейронов и скелетных мышц. Изменение места или параметров раздражения (особенно − повышение интенсивности) восстанавливает нормальный ответ т.е. происходит отвыкание (дизгабитуация). Этому способствует также длительный перерыв в раздражении. Габитуация полисинаптических рефлексов, вероятно, основана на синаптической депрессии.
Ритмические болевые стимулы могут приводить к сенситизации. При этом порог рефлекса снижается, его время укорачивается, рецептивное поле расширяется и происходит иррадиация. Термин кондиционирование означает долговременные изменения рефлекторного ответа, обусловленные способностью полисинаптических рефлексов к адаптации и научению. Например, в опыте, когда болевое раздражение можно прекратить только путем движения в сторону стимула, удается вызвать реверсию нормального сгибательного рефлекса.
Сгибательный и перекрестный разгибательный рефлексы. Если вызвать болевое раздражение задней конечности спинального животного (ущипнуть, ударить электротоком, прикоснуться горячим предметом), она отдергивается путем сгибания в голеностопном, коленном и бедренном суставах. Болевое раздражение передней конечности вызовет аналогичный сгибательный рефлекс. Соответствующие рецепторы находятся в коже. Обеспечиваемое ими движение направлено на удаление конечности от источника болевого (а следовательно, повреждающего) стимула; значит, это типичный оборонительный рефлекс. Его характеристики, а также возможность вызвать его у спинального животного показывает, что речь идет о полисинаптической рефлекторной дуге, которая замыкается на уровне спинного мозга.
Рефлекторное сгибание задней или передней конечности часто сопровождается разгибанием противоположной (контралатеральной) конечности, особенно при болевом раздражении. Такой ответ называется перекрестным разгибательным рефлексом, потому что импульсы ноцицептивных волокон переходят на противоположную сторону спинного мозга, запуская там реакцию разгибания. Болевое раздражение конечности активирует на сегментарном уровне четыре двигательные рефлекторные дуги: на ипсилатеральной стороне сгибатели возбуждаются, разгибатели тормозятся; на контралатеральной происходит прямо противоположное.
Не у каждого есть возможность наблюдать сгибательный рефлекс, перекрестный разгибательный рефлекс и связанное с ними реципрокное торможение на спинальном животном в лаборатории. Однако сгибательный рефлекс можно заметить и без всякой спинализации у домашних животных в первые дни их жизни, а также у младенцев. В этом возрасте высшие двигательные центры еще не «созрели», и простые спинальные рефлексы не интегрированы в сложное двигательное поведение. Четкие сгибательные рефлексы сохраняются и у взрослых − например, отдергивание руки от горячего предмета или босой ноги от острого камня.
Возвратное и пресинаптическое торможение в спинальных двигательных системах. От мотонейронов спинного мозга отходят коллатерали к интернейронам, аксоны которых в свою очередь образуют тормозные синапсы на этих мотонейронах. Такая тормозная цепь осуществляет торможение Реншоу (по имени ее первооткрывателя), а ее тормозные интернейроны называются клетками Реншоу. Это типичный пример торможения по принципу отрицательной обратной связи, поскольку интернейроны тормозят те клетки, которые вызвали их возбуждение. Очевидно, торможение Реншоу служит для предотвращения неконтролируемых колебаний активности мотонейронов. В частности, оно, по-видимому, ограничивает частоту импулъсации статических мотонейронов, обеспечивающих изометрические сокращения.. Предполагают, что ослабление такого действия клеток Реншоу служит причиной патологического повышения мышечного тонуса (спастичности).
Активность первичных афферентов особенно часто регулируется пресинаптически посредством либо торможения по принципу отрицательной обратной связи, либо опережающего (поступательного) торможения. В последнем случае оно происходит без предварительного возбуждения первичных афферентов (афферент Iа сгибателя). Как правило, кожные афференты по сравнению с мышечными находятся под более сильным спинальным и нисходящим пресинаптическим контролем.
Перекрестные связи между сегментарными рефлекторными дугами. Рефлекторные дуги, о которых до сих пор шла речь, не полностью изолированы друг от друга. Даже на сегментарном уровне на их интернейронах происходит широкая конвергенция сигналов от разных источников. Примером служит торможение клетками Реншоу интернейронов, участвующих в реципрокном торможении мышц-антагонистов (тормозных интернейронов Iа). Кроме того, на эти интернейроны оказывают тормозное и возбуждающее влияние другие афференты (сгибательного рефлекса) и высшие двигательные центры. Функциональное значение таких связей до конца не ясно, но по их поводу нетрудно сделать некоторые предположения. Так, выключение торможения мышцы-антагониста может оказаться полезным, когда необходимо стабилизировать положение какого-либо сустава путем одновременного сокращения агонистов и антагонистов.
