
- •Моделирование и применение эвм в химической технологии
- •Часть 1
- •Введение
- •1 Организация выполнения и требования к оформлению лабораторных работ
- •2 Отладка программы в интегрированной среде
- •3 Лабораторные работы
- •3.1 Расчет ячеечного реактора
- •3.1.1 Постановка задачи
- •3.1.2 Вывод математического описания
- •3.1.3 Условия однозначности
- •3.1.4 Выбор метода реализации
- •3.1.5 Блок – схема реализации
- •3.1.6 Идентификация переменных
- •3.1.7 Варианты заданий
- •3.2 Расчет теплообменника
- •3.2.1 Постановка задачи
- •3.2.2 Вывод математического описания
- •3.2.3 Условия однозначности
- •3.2.4 Выбор метода реализации
- •3.2.5 Блок – схема реализации
- •3.2.6 Идентификация переменных
- •4.7 Варианты заданий
- •3.3 Расчет подогревателя
- •3.3.1 Постановка задачи
- •3.3.2 Вывод математического описания
- •3.3.3 Условия однозначности
- •3.3.4 Выбор метода реализации
- •3.3.5 Блок – схема реализации
- •3.3.6 Идентификация переменных
- •3.3.7 Варианты заданий
- •3.4 Расчет изоляции
- •3.4.1 Постановка задачи
- •3.4.2 Вывод математического описания
- •3.4.3 Условия однозначности
- •3.4.4 Выбор метода реализации
- •3.4.5 Блок – схема реализации
- •3.4.6 Идентификация переменных
- •3.4.7 Варианты заданий
- •7 Расчет насадочного абсорбера
- •7.1 Постановка задачи
- •3.5.2 Вывод математического описания
- •3.5.3 Условия однозначности
- •3.5.4 Выбор метода реализации
- •3.5.7 Варианты заданий
- •3.6 Расчет тарельчатого абсорбера
- •3.6.1 Постановка задачи
- •3.6.2 Вывод математического описания
- •3.6.3 Условия однозначности
- •3.6.4 Выбор метода реализации
- •3.6.7 Варианты заданий
- •3.7 Расчёт ректификационной колонны
- •3.7.1 Постановка задачи
- •3.7.2 Вывод математического описания
- •3.7.3 Условия однозначности
- •3.7.4 Выбор метода реализации
- •3.7.5 Блок – схема реализации
- •3.7.6 Идентификация переменных
- •3.7.7 Варианты заданий
- •Зарезервированные слова turbo pascal 7.0
- •Клавиши быстрого управления среды
3.7.3 Условия однозначности
Начальные условия характеризуют значения технологических параметров в начальный момент времени (при τ=0) в любой точке объекта. При этом значение технологических параметров зависит от способа запуска или останова объекта.
В стационарном режиме, который рассматривается в данной задаче, эти условия не имеют смысла.
Граничные условия первого рода (ГУ-I) характеризуют значение технологических параметров на границах объекта в любой момент времени.
Концентрация НК в питании Xf.
Концентрация НК в продукте Xp.
Концентрация НК в остатке Xw.
Граничные условия второго рода (ГУ-II) определяют значения плотностей потоков вещества на границах объекта, характеризующихся законом Фурье:
qD= - ,
где D – коэффициент диффузии, м2/с;
– градиент концентрации, кг/м3.
Поскольку потери в окружающую среду не учтены в математическом описании, то для рассматриваемого процесса в связи с отсутствием градиента, ГУ-II не имеют смысла.
Граничные условия третьего рода (ГУ-III) определяют равенство плотностей потоков вещества на границах раздела двух разнородных фаз.
Как известно, на границе соприкосновения фаз возникает псевдонеподвижный слой вещества. Внутри этого слоя вещество передаётся на молекулярном уровне (диффузией):
qD= - ,
В движущемся слое перенос вещества происходит на молярном уровне по закону Ньютона (плотность потока пропорциональна движущей силе):
qβ = β(y-y*).
При равенстве потоков можно записать:
- = β(y-y*),
где y* – значение равновесной концентрации в приведенной пленке г/м3.
Граничные условия третьего рода позволяют получить при формальном делении правой части равенства на левую безразмерное соотношение (число Нуссельта), показывающее соотношение интенсивностей конвективного и кондуктивного переноса тепла. Следовательно, число Нуссельта также может быть отнесено к граничным условиям третьего рода.
Граничные условия четвертого рода (ГУ-IV) характеризуются равенством плотностей потоков вещества на границе раздела двух одинаковых фаз (газ-газ, жидкость-жидкость, твердое-твердое), передаваемых на молекулярном уровне. Форма записи ГУ-IV следующая:
=
Геометрические условия задают размеры аппарата и отдельных его элементов. В задаче не рассматриваются.
Теплофизические условия определяют свойства технологических веществ. В задаче не рассматриваются.
Кинетические условия: загрузочное отношение (f), флегмовое число (R).
3.7.4 Выбор метода реализации
Существует три возможных варианта расчёта ректификационной колонны: расчёт сверху, снизу и с тарелки питания.
Алгоритмы расчёта колонны сверху или снизу дают некоторую погрешность, в связи с тем, что корректируется состав при подходе к тарелке питания (X=Xf). Следовательно, наиболее точный расчет дает алгоритм, начиная с тарелки питания.
Несмотря на преимущества расчета колонны с тарелкой питания, он является и наиболее сложным в реализации, поэтому ниже приведён алгоритм расчёта колонны снизу.