
- •60.Основные процессы первой стадии гликолиза, их физиологическая значимость.
- •61.Реакции второй стадии гликолиза, их физиологическая значимость.
- •62. Образование ацетил-СоА, его участие в метаболизме. Общая схема и суммарное уравнение цикла Кребса (трикарбоновых кислот).
- •63.Основные ферменты и реакции цикла Кребса.
- •64.Основные реакции и физиологическая роль глиоксилатного пути.
- •66.Основные компоненты и их последовательность расположения в митохондриальной электрон-транспортной цепи. Суммарная схема работы этц дыхания.
- •67.Характеристика комплексов I и II этц дыхания.
- •68.Характеристика комплекса III этц дыхания.
- •69.Характеристика комплекса IV этц дыхания.
- •70. Локализация и механизм сопряженного с транспортом протонов синтеза атф
- •71. Строение и механизм работы комплекса митохондриальной атф-синтазы
- •72. Строение и свойства воды, её функции в растении
- •73. Когезия и адгезия, уникальные свойства воды, роль воды в жизни растений.
- •74. Симпластический и апопластический пути переноса воды и растворенных веществ. Механизм транспорта воды через мембрану
- •76. Аквапорины: структура, функции и механизм регуляции.
- •77. Транспирация, ее механизм и роль в жизни растений. Механизм гуттации.
- •79. Механизм передвижеия воды из корня в надземные органы. Верхний и нижний концевые двигатели.
- •81. Осноные функции макро- и микроэлементов минерального питания.
- •82. Доступнось минеральных элементов, роль хелатов в минеральном обмене.
- •83. Принцип пассивного и активного транспорта веществ. Законы Фика, электрохимический потенциал ионов, его значение в жизни растений.
- •84. Потенциал Нернста, мембранный диффузионный потенциал.
- •85. Потенциал Доннана, моделирование процессов минерального обмена. Строение эпидермиса корня в связи с его поглощающей функцией.
- •86. Транспорт веществ из почвенного раствора в цитоплазму через плазматическую мембрану эпидермальных клеток корня. Особенности строения эпидермиса корня.
- •87. Примеры структуры субъединиц катионных каналов, их молекулярно-биологических и физиологических свойств.
- •5 Типов
- •93. Механизм фиксации азота бобовыми, стадии и значение нодуляции.
- •94. Химизм и физиологическая значимость реакций переаминирования.
- •96. Определения роста, развития и онтогенеза растений. Этапы онтогенеза.
- •97. Кривая роста растений, ее фазы. Скорость роста растений. Классификация типов дифференцированных клеток.
- •98. Физиологическая роль, локализация и типы меристем. Рост стебля двудольных.
- •100. Классические и современные представления о росте клетки растяжением.
- •102. Фитогормоны, признаки отнесения вещества к гормонам, критерии обнаружения рецепторов. Названия основных классов фитогормонов.
- •103. Общие принципы сигнализации при помощи рецепторов клеточной поверхности. Понятие сигнальной трансдукции и сигнальных агентов. Три основные типа мембраных рецепторов.
- •107. Строение и функции ауксинов.
- •109. Механизмы стимуляции роста ауксинами.
- •110. Структура и функции цитокининов.
- •111. Химическая природа, разнообразие и функции гиббереллинов.
- •112. Химическая природа и основные функции брассиностероидов, этилена, абсцизовой кислоты и активных форм кислорода.
- •113. Негормональные регуляторы роста растений. Их типы и применение.
- •114. Определение стресса по Селье и другим авторам, триада Селье, широта понятия стресса в современной биологии растений.
- •115. Примеры стрессоров. Наиболее важные стрессы. Определение адаптации. Специфический и неспецифический стрессовые ответы. Общие схемы эустресса и дистресса у растений
- •116. Классическое и современное определение оксидативного стресса. Важность оксидативного стресса. Основные типы активных форм кислорода, время их распада.
- •119. Основные сайты (места) биосинтеза афк в растениях, локализация синтеза афк в фотосистемах. Классический и неклассический пути синтеза гидроксильного радикала.
- •120. Детоксификация афк в органеллах растений. Сайты синтеза супероксида в пероксисомах.
- •121. Аскорбат-глутатионовый цикл, его физиологическая роль
- •122. Методы изучения оксидативного стресса, афк-сенсоры (рецепторы) в клетках растений. Кальций-связывающие белки и их физиологическая роль.
- •123. Реакции гидроперекисного окисления липидов.
- •126. Механизм поступления натрия и борьба с засолением. Способы защиты от избытка солей.
- •4. Активацяи sos2 (протеин-киназы) – напрямую под действием прямого физического взаимодействия с sos3
- •127. Оксидативное «повреждение» углеводов и нуклеиновых кислот
- •128. Основные и вспомогательные системы антиоксидатной защиты растений.
- •129. Пероксидазы растений, их структура, функция и физиологические роли.
86. Транспорт веществ из почвенного раствора в цитоплазму через плазматическую мембрану эпидермальных клеток корня. Особенности строения эпидермиса корня.
Транспорт веществ из почвенного раствора в цитоплазму через плазматическую мембрану эпидермальных клеток корня:
1) Mg2+, Cа2+ - только через катионные каналы
2) К+, Zn2+, Mn2+, Cu+/2+, Fe2+/3+, NH4+, NO3-, PO43-, SO42- - через каналы (если С выше 10-4 М), или специализированными транспортёрами (если С ниже 10-4 М)
3) Н+ - только специализированными транспортёрами – Н+-АТФазами, Н+ / анион-котранспортерами и
Н+ / катион-антипортерами.
87. Примеры структуры субъединиц катионных каналов, их молекулярно-биологических и физиологических свойств.
Примеры молекулярно-биологических свойств катионных каналов:
- структура и расположение генов, субъединиц, функциональных доменов
- влияние факторов транскрипции и посттрансляционная модификация
- уровень и пространственное распределение экспрессии (go to Genevestigator website)
Физиологические свойства катионных каналов:
- величина проводимости (соотношение с др. системами)
- потенциал-зависимость
- селективность
- кинетика активации
- фармакологически профиль
- регуляция
Изучение ионных каналов:
- на уровне популяции каналов целой клетки
- на уровне одиночных каналов
- двухэлектродная фиксация напряжения
- пэтч-кламп
- Са2+-люминометрия, флуоресцентные зонды
- внешние сканирующие ион-селективные электроды
- внутриклеточное измерение при помощи «острых» ион-селективных электродов»
- позитронная томография
- многие другие методы!
88. Принцип работы и классификация транспортных АТФаз.
Наиболее важные АТФазы:
F-АТФазы (F1-F0) – АТФ-синтазы – митох., хлоропл.
V-АТФазы (V1-V0) – эндомембранные (Н+)
Р-АТФазы (E1-E2) – плазматической мембраны (катионы)
Малоизвестные типы – А-АТФазы (А) и Е-АТФазы (что они катализируют?)
Р-АТФазы (всего 159 у всех организмов).
5 Типов
Тип I - переносят калий, переходные металлы, тяжелые металлы.
Tип IA - K+ - нетипичные. 2 комплекса – один для протонов, другой для калия.
Tип IB транспортируют Cu+, Ag+, Cu2+, Zn2+, Cd2+, Pb2+ и Co2+.
Тип II - 4 группы:
Tипы IIA и IIB транспортируют Ca2+.
Tип IIC – Na+/K+ и H+/K+ только у животных.
Tип IID – у грибов – функция не известна.
Тип III - H+-ATФазы плазматической мембраны растений (10 генов) и грибов (IIIA) + Mg2+-ATФазы бактерий (IIIB).
Тип IV - фосфолипидные ATФазы.
Тип V - у всех эукариот – функция не известна – предположительно траспорт катионов.
Принцип работы
Ферменты расщепляют АТФ и высвобождают химическую энергию, заключённую в молекулах АТФ. Эта освобождённая энергия тратится тут же на какую-то полезную работу. Транспортные мембранные АТФазы тратят её на доставку определённого вещества на противоположную сторону мембраны «силой». Различные АТФазы, встроенные в мембрану, выполняет функцию переносчиков для различных веществ и являются, таким образом, молекулярными транспортёрами, «насильно» переносящими вещества сквозь мембрану. Такой перенос называется активным транспортом.
Самой главной мембранной АТФазой по праву можно считать Na,K-АТФазу (натрий-калиевую аденозинтрифосфатазу).
92. Важность азотного питания растений. Превращения азота в почве и растении. Роль бактерий.
Азотное питание
N – критически-важный компонент аминокислот и белков (18% от массы белка), а также ДНК, РНК, НАД и НАДФ
атмосферный азот (N2) не ассимилируется растениями; он должен быть конвертирован в доступную для растений форму NH4+ или NO3-
в растении аммонийный и нитратный азот ассимилируется в виде аминокислот и нуклеиновых кислот
азот не образуется в результате эрозии горной породы, как, например, могут образовываться в почве P, S и Ca
важнейшую роль в утилизации азота растением играют микроорганизмы почвы и симбиотические микроорганизмы
Почвенные аммонифицирующие бактерии расщепляют органическое вещество почвы, выделяя NH3, почвенные азот-фиксирующие бактерии производят NH3, из N2. Почвенные нитрифицирующие бактерии конвертируют NH3 в NO3–. Почвенные денитрифицирующие бактерии могут обратно переводить NO3– в N2.