
- •2.Электронные устройства
- •Устройство и применение
- •3.Синхронная машина
- •Устройство
- •Принцип действия Двигательный принцип
- •Генераторный режим
- •Разновидности синхронных машин
- •5. Электропривод
- •6. Полупроводники́
- •Механизм электрической проводимости полупроводников
- •Энергетические зоны
- •Подвижность
- •Виды полупроводников По характеру проводимости Собственная проводимость
- •Примесная проводимость
- •По виду проводимости Электронные полупроводники (n-типа)
- •Дырочные полупроводники (р-типа)
- •7. Трансформа́тор
- •9. Импульсный источник питания
- •10. Машина постоянного тока
- •Принцип действия
- •Электродвигатель
- •Генератор
- •11.Стабилитрон
- •Структура усилителя
- •Классификация Аналоговые усилители и цифровые усилители
- •Виды усилителей по элементной базе
- •Виды усилителей по типу нагрузки
- •13. Реле управления
- •Устройство и принцип действия
- •Генераторы гармонических колебаний
- •Устройство и применение
- •19.Оптоэлектронные устройства
- •21. Однофазные выпрямители Однополупериодный выпрямитель (четвертьмост)
- •Полумост
- •Полный мост (Гретца)
- •Схемы включения полевых транзисторов
- •Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •23. Основные понятия об интегральных схемах (аналоговые и цифровые)
- •24. Трехфазные трансформаторы
- •25. Усилители постоянного тока.
- •26. Цифровые логические элементы и логические операции.
- •27. Триггеры
- •28. Основные понятия об операционных усилителях и их применении.
- •29. Стабилизаторы напряжения.
- •30. Сглаживающие фильтры.
- •31. Расчет электропривода.
- •32. Электропроводимость полупроводников.
- •33. Электронно-дырочный переход и его свойства.
- •34. Тиристор
- •Вольтамперная характеристика тиристора
- •35. Структурная схема и основные параметры электронного выпрямителя.
- •36. Трансформаторы в различных режимах.
- •Режимы работы трансформатора
- •37. Мультивибраторы.
- •Ждущие мультивибраторы Моностабильный (одностабильный) мультивибратор
- •Бистабильный мультивибратор
- •38. Транзисторные и диодные ключи.
- •Диодные ключи
- •39. Основные элементы и параметры усилительного каскада.
- •40. Режимы работы усилительных каскадов.
- •41. Многокаскадные усилители.
- •42. Выходные каскады. Обратные связи в усилителях.
- •Обратные связи в усилителях
- •43. Формирователи импульсных сигналов.
- •44. Классификация полупроводниковых приборов.
- •45)Полупроводниковые резисторы и диоды
- •Типы диодов по назначению
- •4 6) Биполярные транзисторы. Коэффициенты усиления в транзисторах
- •47) Фотодиоды и светодиоды
- •48) Схемы включения биполярных транзисторов
- •49) Тиристоры
- •50) Однофазные выпрямители
- •Однополупериодный выпрямитель (четвертьмост)
- •51) Трехфазные выпрямили
- •Три четвертьмоста параллельно (схема Миткевича)
- •Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно) Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)
- •Три полумоста параллельно, объединённые звездой («звезда-Ларионов»)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)
- •Т ри полных моста параллельно (12 диодов)
- •Три полных моста последовательно (12 диодов)
- •52) Управляемые выпрямители
- •53) Электронные усилители
- •54) Классификация электронных усилителей
- •55) Основные элементы и параметры усилительного каскада
- •5 6) Режимы работы усилительных каскадов
- •57) Усилительный каскад с оэ, ок, об
- •58) Многокаскадные усилители
- •59) Выходные каскады (однотактные, двухтактные, с трансформаторной и бестрансформаторной связью)
- •60) Обратные связи в усилителях
- •61) Усилители постоянного тока
- •62) Компаратор сигналов
- •63) Масштабирующий и интегрирующий усилитель
- •64) Электронные генераторы с lc-контуром и rc-контуром
- •65) Электронные ключи
- •Неуправляемые
- •Управляемые
- •66) Основные сведения об импульсных устройствах и импульсах
- •67) Ограничители импульсов
- •68) Генераторы линейно-изменяющего напряжения
- •Учитывая, что
- •86. Двигатели для электропривода
Принцип действия Двигательный принцип
Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)
где
—
число пар полюсов ротора.
Генераторный режим
Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3...2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.
Частота
индуцируемой ЭДС
[Гц]
связана с частотой вращения ротора
[об/мин]
соотношением:
,
где — число пар полюсов ротора.
Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям.
Разновидности синхронных машин
Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения 50-600 об/мин).
Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора (6000 (редко), 3000, 1500 об/мин.)
Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает ёмкостную нагрузку.
Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы
Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).
Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.