
- •2.Электронные устройства
- •Устройство и применение
- •3.Синхронная машина
- •Устройство
- •Принцип действия Двигательный принцип
- •Генераторный режим
- •Разновидности синхронных машин
- •5. Электропривод
- •6. Полупроводники́
- •Механизм электрической проводимости полупроводников
- •Энергетические зоны
- •Подвижность
- •Виды полупроводников По характеру проводимости Собственная проводимость
- •Примесная проводимость
- •По виду проводимости Электронные полупроводники (n-типа)
- •Дырочные полупроводники (р-типа)
- •7. Трансформа́тор
- •9. Импульсный источник питания
- •10. Машина постоянного тока
- •Принцип действия
- •Электродвигатель
- •Генератор
- •11.Стабилитрон
- •Структура усилителя
- •Классификация Аналоговые усилители и цифровые усилители
- •Виды усилителей по элементной базе
- •Виды усилителей по типу нагрузки
- •13. Реле управления
- •Устройство и принцип действия
- •Генераторы гармонических колебаний
- •Устройство и применение
- •19.Оптоэлектронные устройства
- •21. Однофазные выпрямители Однополупериодный выпрямитель (четвертьмост)
- •Полумост
- •Полный мост (Гретца)
- •Схемы включения полевых транзисторов
- •Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •23. Основные понятия об интегральных схемах (аналоговые и цифровые)
- •24. Трехфазные трансформаторы
- •25. Усилители постоянного тока.
- •26. Цифровые логические элементы и логические операции.
- •27. Триггеры
- •28. Основные понятия об операционных усилителях и их применении.
- •29. Стабилизаторы напряжения.
- •30. Сглаживающие фильтры.
- •31. Расчет электропривода.
- •32. Электропроводимость полупроводников.
- •33. Электронно-дырочный переход и его свойства.
- •34. Тиристор
- •Вольтамперная характеристика тиристора
- •35. Структурная схема и основные параметры электронного выпрямителя.
- •36. Трансформаторы в различных режимах.
- •Режимы работы трансформатора
- •37. Мультивибраторы.
- •Ждущие мультивибраторы Моностабильный (одностабильный) мультивибратор
- •Бистабильный мультивибратор
- •38. Транзисторные и диодные ключи.
- •Диодные ключи
- •39. Основные элементы и параметры усилительного каскада.
- •40. Режимы работы усилительных каскадов.
- •41. Многокаскадные усилители.
- •42. Выходные каскады. Обратные связи в усилителях.
- •Обратные связи в усилителях
- •43. Формирователи импульсных сигналов.
- •44. Классификация полупроводниковых приборов.
- •45)Полупроводниковые резисторы и диоды
- •Типы диодов по назначению
- •4 6) Биполярные транзисторы. Коэффициенты усиления в транзисторах
- •47) Фотодиоды и светодиоды
- •48) Схемы включения биполярных транзисторов
- •49) Тиристоры
- •50) Однофазные выпрямители
- •Однополупериодный выпрямитель (четвертьмост)
- •51) Трехфазные выпрямили
- •Три четвертьмоста параллельно (схема Миткевича)
- •Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно) Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)
- •Три полумоста параллельно, объединённые звездой («звезда-Ларионов»)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)
- •Т ри полных моста параллельно (12 диодов)
- •Три полных моста последовательно (12 диодов)
- •52) Управляемые выпрямители
- •53) Электронные усилители
- •54) Классификация электронных усилителей
- •55) Основные элементы и параметры усилительного каскада
- •5 6) Режимы работы усилительных каскадов
- •57) Усилительный каскад с оэ, ок, об
- •58) Многокаскадные усилители
- •59) Выходные каскады (однотактные, двухтактные, с трансформаторной и бестрансформаторной связью)
- •60) Обратные связи в усилителях
- •61) Усилители постоянного тока
- •62) Компаратор сигналов
- •63) Масштабирующий и интегрирующий усилитель
- •64) Электронные генераторы с lc-контуром и rc-контуром
- •65) Электронные ключи
- •Неуправляемые
- •Управляемые
- •66) Основные сведения об импульсных устройствах и импульсах
- •67) Ограничители импульсов
- •68) Генераторы линейно-изменяющего напряжения
- •Учитывая, что
- •86. Двигатели для электропривода
38. Транзисторные и диодные ключи.
Ключ (переключатель, выключатель) — электрический коммутационный аппарат, служащий для замыкания и размыкания электрической цепи.
Диодные ключи
Простейший тип электронных ключей – диодные ключи. В качестве активных элементов в них используются полупроводниковые или электровакуумные диоды.

рис. 1. Схема и передаточная характеристика последовательного диодного ключа с нулевым уровнем включения.
Приведенной
выше схеме соответствует нулевой уровень
включения (уровень входного напряжения,
определяющий отрицание или запирание
диода). Для изменении уровня включения
в цепь ключа вводят источник напряжения
смещения
.
В этом случае при
диод открыт и
,
а при
- закрыт и
.
Если изменить полярность источника
,
то график функции приобретет вид,
показанный пунктирной линией.

рис. 2. Схема и передаточная характеристика последовательного диодного ключа с ненулевым уровнем включения.
В качестве источника часто используют резистивный делитель напряжения, подключенный к общему для электронного устройства источнику питания. Применяя переменный резистор как регулируемый делитель напряжения, можно изменять уровень включения.
Диодные ключи не позволяют электрически разделить управляющую и управляемые цепи, что часто требуется на практике. В этих случаях используются транзисторные ключи.
Транзисторный ключ — токовый ключ, выполненный на одном или нескольких транзисторах, работающих в ключевом режиме. Изменение электропроводности транзистора, обусловливающее переключение тока в нагрузке, обеспечивается подачей на его базу управляющего напряжения (сигнала) определённой полярности и уровня. Нагрузка, подключённая к транзисторному ключу, оказывается зашунтированной большим или малым сопротивлением транзистора. В ключевом режиме могут работать как обычные (полевые и биполярные) транзисторы, так и транзисторы, специально разработанные для работы в ключевом режиме (IGBT-транзисторы).

рис. 3. Схема и характеристики режима работы ключа на биполярном транзисторе.
Входная
(управляющая) цепь здесь отделена от
выходной (управляемой) цепи. Транзистор
работает в ключевом режиме, характеризуемой
двумя состояниями. Первое состояние
определяется точкой
на выходных характеристиках транзистора;
его называют режимом отсечки. В режиме
отсечки ток базы
,
коллекторный ток
равен начальному коллекторному току,
а коллекторное напряжение
.
Режим отсечки реализуется при отрицательных
потенциалах базы. Второе состояние
определяется точкой
и называется режимом насыщения. Он
реализуется при положительных потенциалах
базы. При этом ток базы определяется в
основном сопротивлением резистора
и
,
поскольку сопротивление открытого
эмиттерного перехода мало. Коллекторный
переход тоже открыт, и ток коллектора
,
а коллекторное напряжение
.
Из режима отсечки в режим насыщения
транзистор переводится под воздействием
положительного входного напряжения.
При этом повышению входного напряжения
(потенциала базы) соответствует понижение
выходного напряжения (потенциала
коллектора), и наоборот. Такой ключ
называется инвертирующим (инвертором).
В рассмотренном транзисторном ключе
уровни выходного напряжения, соответствующие
режимам отсечки и насыщения стабильны
и почти не зависят от температуры.
Повторяющий ключ выполняют по схеме
эмиттерного повторителя.
Время переключения ключей на биполярных транзисторах определяется барьерными емкостями p-n-переходов и процессами накопления и рассасывания неосновных носителей заряда в базе. Для повышения быстродействия и входного сопротивления применяют ключи на полевых транзисторах.