
- •2.Электронные устройства
- •Устройство и применение
- •3.Синхронная машина
- •Устройство
- •Принцип действия Двигательный принцип
- •Генераторный режим
- •Разновидности синхронных машин
- •5. Электропривод
- •6. Полупроводники́
- •Механизм электрической проводимости полупроводников
- •Энергетические зоны
- •Подвижность
- •Виды полупроводников По характеру проводимости Собственная проводимость
- •Примесная проводимость
- •По виду проводимости Электронные полупроводники (n-типа)
- •Дырочные полупроводники (р-типа)
- •7. Трансформа́тор
- •9. Импульсный источник питания
- •10. Машина постоянного тока
- •Принцип действия
- •Электродвигатель
- •Генератор
- •11.Стабилитрон
- •Структура усилителя
- •Классификация Аналоговые усилители и цифровые усилители
- •Виды усилителей по элементной базе
- •Виды усилителей по типу нагрузки
- •13. Реле управления
- •Устройство и принцип действия
- •Генераторы гармонических колебаний
- •Устройство и применение
- •19.Оптоэлектронные устройства
- •21. Однофазные выпрямители Однополупериодный выпрямитель (четвертьмост)
- •Полумост
- •Полный мост (Гретца)
- •Схемы включения полевых транзисторов
- •Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •23. Основные понятия об интегральных схемах (аналоговые и цифровые)
- •24. Трехфазные трансформаторы
- •25. Усилители постоянного тока.
- •26. Цифровые логические элементы и логические операции.
- •27. Триггеры
- •28. Основные понятия об операционных усилителях и их применении.
- •29. Стабилизаторы напряжения.
- •30. Сглаживающие фильтры.
- •31. Расчет электропривода.
- •32. Электропроводимость полупроводников.
- •33. Электронно-дырочный переход и его свойства.
- •34. Тиристор
- •Вольтамперная характеристика тиристора
- •35. Структурная схема и основные параметры электронного выпрямителя.
- •36. Трансформаторы в различных режимах.
- •Режимы работы трансформатора
- •37. Мультивибраторы.
- •Ждущие мультивибраторы Моностабильный (одностабильный) мультивибратор
- •Бистабильный мультивибратор
- •38. Транзисторные и диодные ключи.
- •Диодные ключи
- •39. Основные элементы и параметры усилительного каскада.
- •40. Режимы работы усилительных каскадов.
- •41. Многокаскадные усилители.
- •42. Выходные каскады. Обратные связи в усилителях.
- •Обратные связи в усилителях
- •43. Формирователи импульсных сигналов.
- •44. Классификация полупроводниковых приборов.
- •45)Полупроводниковые резисторы и диоды
- •Типы диодов по назначению
- •4 6) Биполярные транзисторы. Коэффициенты усиления в транзисторах
- •47) Фотодиоды и светодиоды
- •48) Схемы включения биполярных транзисторов
- •49) Тиристоры
- •50) Однофазные выпрямители
- •Однополупериодный выпрямитель (четвертьмост)
- •51) Трехфазные выпрямили
- •Три четвертьмоста параллельно (схема Миткевича)
- •Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно) Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)
- •Три полумоста параллельно, объединённые звездой («звезда-Ларионов»)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов)
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)
- •Т ри полных моста параллельно (12 диодов)
- •Три полных моста последовательно (12 диодов)
- •52) Управляемые выпрямители
- •53) Электронные усилители
- •54) Классификация электронных усилителей
- •55) Основные элементы и параметры усилительного каскада
- •5 6) Режимы работы усилительных каскадов
- •57) Усилительный каскад с оэ, ок, об
- •58) Многокаскадные усилители
- •59) Выходные каскады (однотактные, двухтактные, с трансформаторной и бестрансформаторной связью)
- •60) Обратные связи в усилителях
- •61) Усилители постоянного тока
- •62) Компаратор сигналов
- •63) Масштабирующий и интегрирующий усилитель
- •64) Электронные генераторы с lc-контуром и rc-контуром
- •65) Электронные ключи
- •Неуправляемые
- •Управляемые
- •66) Основные сведения об импульсных устройствах и импульсах
- •67) Ограничители импульсов
- •68) Генераторы линейно-изменяющего напряжения
- •Учитывая, что
- •86. Двигатели для электропривода
Полумост
На двух диодах и двух конденсаторах, широко известный как «с удвоением напряжения» или «удвоитель Латура-Делона-Гренашера».[10]
Известна также схема с удвоением тока: параллельно единственной вторичной обмотке трансформатора включаются два последовательно соединённых дросселя, средняя точка соединения между которыми используется как средняя точка в «двухполупериодном выпрямителе со средней точкой». [11]
Полный мост (Гретца)
На четырёх диодах, широко известный как «двухполупериодный», изобретён немецким физиком Лео Гретцем. Площадь под интегральной кривой равна:
Средняя
ЭДС равна
то
есть вдвое больше, чем в четвертьмостовом.
Эквивалентное внутреннее активое
сопротивление равно
.
Частота
пульсаций равна
,
где
—
частота сети.
Наибольшее
мгновенное значение напряжения на
диодах —
22. Полевой транзистор — полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого входным сигналом.
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).
Схемы включения полевых транзисторов
Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).
На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.
Транзисторы с управляющим p-n переходом
Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.
Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.
Транзисторы с изолированным затвором (мдп-транзисторы)
Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоемдиэлектрика.
В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно являетсякремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.
Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.
МДП-транзисторы с индуцированным каналом
При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, большихUЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.
В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.
МДП-транзисторы со встроенным каналом
В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности