Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные понятия теории оптимизации.doc
Скачиваний:
145
Добавлен:
02.05.2014
Размер:
216.58 Кб
Скачать

Тема 15. Основные понятия теории оптимизации.

На практике постоянно встречаются такие ситуации, когда достичь какого-то результата можно не одним, а многими различными способами. В подобной ситуации может оказаться и отдельно взятый человек, например, когда он решает вопрос о распределении своих расходов, и целое предприятие или даже отрасль, если необходимо определить, как использовать имеющиеся в их распоряжении ресурсы, чтобы добиться максимального выхода продукции, и, наконец народное хозяйство в целом. Естественно, при большом количестве решений должно быть выбрано наилучшее.

Успешность решения подавляющего большинства экономических задач зависит от наилучшего, наивыгоднейшего способа использования ресурсов. И от того, как будут распределены эти, как правило, ограниченные ресурсы, будет зависеть конечный результат деятельности.

Суть методов оптимизации (оптимального программирования) заключается в том, чтобы, исходя из наличия определенных ресурсов, выбрать такой способ их использования (распределения), при котором будет обеспечен максимум или минимум интересующего показателя. [1]

Необходимым условием использования оптимального подхода к планированию (принципа оптимальности) является гибкость, альтернативность производственно-хозяйственных ситуаций, в условиях которых приходится принимать планово-управленческие решения. Именно такие ситуации, как правило составляют повседневную практику хозяйствующего субъекта (выбор производственной программы, прикрепление к поставщикам, маршрутизация, раскрой материалов, приготовление смесей).

Оптимальное программирование, таким образом, обеспечивает успешное решение целого ряда экстремальных задач производственного планирования. В области же макроэкономического анализа, прогнозирования и планирования оптимальное программирование позволяет выбрать вариант народнохозяйственного плана (программы развития), характеризующийся оптимальным соотношением потребления и сбережений (накоплений), оптимальной долей производственных капиталовложений в национальном доходе, оптимальным соотношением коэффициента роста и коэффициента рентабельности национальной экономики и т. д.

Оптимальное программирование обеспечивает получение практически ценных результатов, так как по своей природе оно вполне соответствует характеру исследуемых технико-экономических процессов и явлений. С математической и статистической точек зрения этот метод применим лишь к тем явлениям, которые выражаются положительными величинами и в своей совокупности образуют объединение взаимозависимых, но качественно различных величин. Этим условиям, как правило, отвечают величины, которыми характеризуются экономические явления. Перед исследователем экономики всегда имеется – некоторое множество разного рода положительных величин. Решая задачи оптимизации, экономист всегда имеет дело не с одной, а с несколькими взаимозависимыми величинами или факторами.

Оптимальное программирование можно применять лишь к таким задачам, при решении которых оптимальный результат достигается лишь в виде точно сформулированных целей и при вполне определенных ограничениях, обычно вытекающих из наличных средств (производственных мощностей, сырья, трудовых ресурсов и т. д.). В условия задачи обычно входит некоторая математически сформулированная система взаимозависимых факторов, ресурсы и условия, ограничивающие характер их использования.

Задача становится разрешимой при введении в нее определенных оценок как для взаимозависимых факторов, так и для ожидаемых результатов. Следовательно, оптимальность результата задачи программирования имеет относительный характер. Этот результат оптимален только с точки зрения тех критериев, которыми он оценивается, и ограничений, введенных в задачу.

Отталкиваясь от вышесказанного, для любых задач оптимального программирования характерны три следующих момента: [2]

1) наличие системы взаимозависимых факторов;

2) строго определенный критерий оценки оптимальности;

3) точная формулировка условий, ограничивающих использование наличных ресурсов или факторов.

Из многих возможных вариантов выбирается альтернативная комбинация, отвечающая всем условиям, введенным в задачу, и обеспечивающая минимальное или максимальное значение выбранного критерия оптимальности. Решение задачи достигается применением определенной математической процедуры, которая заключается в последовательном приближении рациональных вариантов, соответствующих выбранной комбинации факторов, к единственному оптимальному плану.

Математически это может быть сведено к нахождению экстремального значения некоторой функции, то есть к задаче типа:

Найти max (min) f(x) при условии, что переменная х (точка х) пробегает некоторое заданное множество Х:

f(x) ® max (min), х I Х (4.1)

Определенная таким образом задача называется задачей оптимизации. Множество Х называется допустимым множеством данной задачи, а функция f(x) – целевой функцией. [3]

Итак, оптимизационной является задача, которая состоит в выборе среди некоторого множества допустимых (т. е. допускаемых обстоятельствами дела) решений (Х) тех решений (х), которые в том или ином смысле можно квалифицировать как оптимальные. При этом допустимость каждого решения понимается в смысле возможности его фактического существования, а оптимальность – в смысле его целесообразности.[4]

Очень многое зависит от того, в каком виде задается допустимое множество Х. Во многих случаях это делается с помощью системы неравенств (равенств): [5]

q1 (х1, х2, … , хn) {? , = , ?} 0,

q2 (х1, х2, … , хn) {? , = , ?} 0, (4.2)

……………………………..

qm (х1, х2, … , хn) {? , = , ?} 0,

где q1, q2, … ,qm – некоторые функции, (х1, х2, … , хn) = х – способ, которым точка х задается набором из нескольких чисел (координат), являясь точкой n-мерного арифметического пространства Rn. Соответственно множество Х есть подмножество в Rn и составляет множество точек (х1, х2, … , хn) I Rn и удовлетворяющих системе неравенств (2.2.2).

Функция f(х) становится функцией n переменных f(х1, х2, … , хn), оптимум (max или min), который требуется найти.

Понятно, что следует найти не только само значение max (min) (х1, х2, … , хn), но и точку или точки, если их больше одной, в которых это значение достигается. Такие точки называются оптимальными решениями. Множество всех оптимальных решений называют оптимальным множеством. [6]

Задача, описанная выше, есть общая задача оптимального (математического) программирования, в основе построения которой лежат принципы оптимальности и системности. Функция f называется целевой функцией, неравенства (равенства) qi (х1, х2, … , хn) {? , = , ?} 0, i = 1, 2, … , m – ограничениями. [7] В большинстве случаев в число ограничений входят условия неотрицательности переменных:

х1 ? 0, х2 ? 0, … , хn ? 0,

или части переменных. Впрочем, это может быть и необязательным.

В зависимости от характера функций-ограничений и целевой функции различают разные виды математического программирования: [8]

1. линейное программирование – функции линейны;

2. нелинейного программирования – хотя бы одна из этих функций нелинейна;

3. квадратичного программирования – f(х) является квадратичной функцией, ограничения линейны;

4. сепарабельное программирование – f(х) представляет собой сумму функций, различных для каждой переменной, условия – ограничения могут быть как линейными, так и нелинейными;

5. целочисленное (линейное или нелинейное) программирование – координаты искомой точки х являются только целыми числами;

6. выпуклое программирование – целевая функция – выпуклая, функции – ограничения – выпуклые, то есть рассматриваются выпуклые функции на выпуклых множествах и т. п.

Наиболее простым и часто встречающимся является случай, когда эти функции линейны и каждая из них имеет вид:

а1х1 + а2х2 + … аnхn + b ,

то есть имеет место задача линейного программирования. Подсчитано, что в настоящее время примерно 80-85% всех решаемых на практике задач оптимизации относятся к задачам линейного программирования.[9]

Сочетая в себе простоту и реалистичность исходных посылок, этот метод вместе с тем обладает огромным потенциалом в области определения наилучших с точки зрения избранного критерия планов.

Первые исследования в области линейного программирования, ставившие своей целью выбор оптимального плана работы в рамках производственного комплекса относятся к концу 30-х годов нашего века и связаны с именем Л.В. Канторовича.[10] В отечественной научной традиции именно его принято считать первым разработчиком этого метода.

В 30-е гг., в период интенсивного эко­номического и индустриального разви­тия Советского Союза, Канторович был в авангар­де математических исследований и стре­мился применить свои теоретические разработки в практике растущей совет­ской экономики. Такая возможность представилась в 1938 г., когда он был на­значен консультантом в лабораторию фанерной фабрики. Перед ним была по­ставлена задача разработать такой ме­тод распределения ресурсов, который; мог бы максимизировать производительность оборудования, и Канторович, сформули­ровав проблему с помощью математиче­ских терминов, произвел максимизацию линейной функции, подверженной боль­шому количеству ограничителей. Не имея чистого экономического образо­вания, он тем не менее знал, что максими­зация при многочисленных ограниче­ниях—это одна из основных экономиче­ских проблем и что метод, облегчающий планирование на фанерных фабриках, может быть использован во многих дру­гих производствах, будь то определение оптимального использования посевных площадей или наиболее эффективное распределение потоков транспорта.

Говоря о развитии этого метода на Западе, следует сказать о Тьяллинге Купмансе, американском экономисте-математике голландского происхождения.

В миссии торгового флота Купманс пытался так разработать маршруты флотов союзни­ков, чтобы снизить до минимума затра­ты на доставку грузов. Задача была крайне сложной: тысячи торговых судов везли миллионы тонн грузов по морским путям между сотнями портов, рассеян­ных по всему миру. Эта работа предоста­вила возможность Купмансу применить свои математические знания к решению фун­даментальной экономической проблемы – оптимальному распределению дефицитных ресурсов между конкурирующими потребителями.

Купманс разработал аналитическую методи­ку, названную анализом деятельности, которая решительно изменила подход экономистов и руководителей к распре­делению маршрутов. Впервые он описал эту методику в 1942 г., назвав ее «Соот­ношение между грузами на различных маршрутах» ("Exchange Ratios Between Cargoes on Various Routes"), где показал возможность подхода к проблеме рас­пределения как к математической про­блеме максимизации в пределах ограни­чений. Величина, подлежащая макси­мальному увеличению, — это стоимость доставленного груза, равная сумме стои­мостей грузов, доставленных в каждый из портов. Ограничения были представ­лены уравнениями, выражающими отно­шение количества расходуемых факто­ров производства (например, судов, вре­мени, труда) к количеству груза, достав­ленному в различные места назначения, где величина любой из затрат не должна превышать имеющуюся в распоряжении сумму.

При работе над проблемой максими­зации Купманс разработал математические уравнения, которые нашли широкое при­менение как в экономической теории, так и в практике управления. Эти уравнения определяли для каждой из затрат на про­изводство коэффициент, равный цене этой затраты в условиях идеальных кон­курентных рынков. Таким образом была установлена основополагающая связь между теориями эффективности про­изводства и теориями распределения че­рез конкурентные рынки. Кроме того, уравнения Купманса представляли большую ценность для центральных планирую­щих органов, которые могли использо­вать эти уравнения для определения со­ответствующих цен на различные затра­ты, оставляя при этом выбор оптималь­ных маршрутов на усмотрение местных директоров, обязанность которых со­стояла в максимизации прибыли. Метод анализа деятельности мог широко при­меняться любыми руководителями при планировании процессов производства.

В 1975 году Л.В. Канторовичу и Тьяллингу Ч. Купмансу была присуждена Нобелевская премия «за вклад в теорию оптимального распределения ресурсов».

Говоря о первых исследованиях в области линейного программирования, нельзя также не упомянуть еще об одном американском ученом – Джордже Д. Данциге. Конкретная формулировка метода линейного программирования восходит к его работе, выполненной им по заказу ВВС США во время Второй Мировой войны, когда возникла проблема координации действий одной большой организации в таких вопросах, как накопление запасов, производство и содержание оборудования и материально-технического снаряжения, причем имелись альтернативы и ограничения. Кроме того, в свое время Дж. Данцинг работал совместно с В.В. Леонтьевым, и симплекс-метод решения линейных оптимизационных задач (наиболее часто применяемый для их решения) появился в связи с одним из первых практических применений метода межотраслевого баланса.