
- •Глава 6 посвящена понятию производных классов, которое позволяет строить
- •Раздел 3.4 главы 2. Для обозначения справочного руководства применяется
- •1991 Г.Г. (такие как множественное наследование, статические функции-члены
- •1.1 Введение
- •1.2 Парадигмы программирования
- •1.2.1 Процедурное программирование
- •1.2.5 Объектно-ориентированное программирование
- •1.5 Поддержка объектно-ориентированного программирования
- •1.5.1 Механизм вызова
- •1.5.2 Проверка типа
- •1.5.3 Множественное наследование
- •1.6 Пределы совершенства
- •2.2 Имена
- •2.3.2 Неявное преобразование типа
- •2.4 Литералы
- •2.4.4 Строки
- •2.6. Экономия памяти
- •2.6.1 Поля
- •3.1.1 Анализатор
- •3.1.2 Функция ввода
- •3.2 Сводка операций
- •3.2.3 Инкремент и декремент
- •3.2.5 Преобразование типа
- •3.2.6 Свободная память
- •3.3.2 Оператор goto
- •4.1 Введение
- •4.3.1 Единственный заголовочный файл
- •4.3.2 Множественные заголовочные файлы
- •4.4 Связывание с программами на других языках
- •4.6.3 Передача параметров
- •5.1 Введение и краткий обзор
- •5.3.1 Альтернативные реализации
- •5.3.2 Законченный пример класса
- •Vector и matrix, мы могли бы обойтись без контроля индекса при
- •5.4.5 Указатели на члены
- •5.4.6 Структуры и объединения
- •5.5.3 Свободная память
- •5.5.5 Массивы объектов класса
- •6.1 Введение и краткий обзор
- •6.2.3 Иерархия классов
- •6.2.4 Поля типа
- •6.4.1 Монитор экрана
- •6.5 Множественное наследование
- •7.1 Введение
- •7.3 Пользовательские операции преобразования типа
- •7.3.2 Операции преобразования
- •7.3.3 Неоднозначности
- •7.5 Большие объекты
- •Void f2(t a) // вариант с контролем
- •Void f3(t a) // вариант с контролем
- •Inv() обращает саму матрицу m, а не возвращает новую, обратную m,
- •7.13 Предостережения
- •8.1 Введение
- •8.4.4 Неявная передача операций
- •8.4.5 Введение операций с помощью параметров шаблонного класса
- •8.7.1 Задание реализации с помощью параметров шаблона
- •9.1 Обработка ошибок
- •9.1.2 Другие точки зрения на особые ситуации
- •9.3.2 Производные особые ситуации
- •9.4.2 Предостережения
- •9.4.3 Исчерпание ресурса
- •9.4.4 Особые ситуации и конструкторы
- •9.5 Особые ситуации могут не быть ошибками
- •10.1 Введение
- •10.2 Вывод
- •10.2.1 Вывод встроенных типов
- •10.4.1.2 Поля вывода
- •10.4.1.4 Вывод целых
- •Istream - шаблон типа smanip, а smanip - двойник для ioss.
- •10.5.1 Закрытие потоков
- •10.5.2 Строковые потоки
- •X Целый параметр выдается в шестнадцатеричной записи;
- •11.1 Введение
- •11.2 Цели и средства
- •11.3 Процесс развития
- •11.3.1 Цикл развития
- •11.3.2 Цели проектирования
- •11.3.3 Шаги проектирования
- •11.3.3.1 Шаг 1: определение классов
- •11.3.3.2 Шаг 2: определение набора операций
- •11.3.3.3 Шаг 3: указание зависимостей
- •11.3.3.4 Шаг 4: определение интерфейсов
- •11.3.3.5 Перестройка иерархии классов
- •11.3.3.6 Использование моделей
- •11.3.4 Эксперимент и анализ
- •11.3.5 Тестирование
- •11.3.6 Сопровождение
- •11.3.7 Эффективность
- •11.4 Управление проектом
- •11.4.1 Повторное использование
- •11.4.2 Размер
- •11.4.3 Человеческий фактор
- •11.5 Свод правил
- •11.6 Список литературы с комментариями
- •12.1 Проектирование и язык программирования.
- •12.1.1 Игнорирование классов
- •12.1.2 Игнорирование наследования
- •12.1.3 Игнорирование статического контроля типов
- •12.1.4 Гибридный проект
- •12.2 Классы
- •12.2.1 Что представляют классы?
- •12.2.2 Иерархии классов
- •12.2.3 Зависимости в рамках иерархии классов.
- •Vertical_scrollbar или с помощью одного типа scrollbar, который
- •12.2.6 Отношения использования
- •12.2.7 Отношения внутри класса
- •12.3 Компоненты
- •12.4 Интерфейсы и реализации
- •12.5 Свод правил
- •13.1 Введение
- •13.2 Конкретные типы
- •13.4 Узловые классы
- •1, 2, 6 И 7. Класс, который не удовлетворяет условию 6, походит
- •13.5.1 Информация о типе
- •13.6 Обширный интерфейс
- •13.7 Каркас области приложения
- •13.8 Интерфейсные классы
- •13.10 Управление памятью
13.5.1 Информация о типе
В С++ нет иного стандартного средства получения динамической информации
о типе, кроме вызовов виртуальных функцийЬ.
Ь Хотя было сделано несколько предложений по расширению С++ в этом
направлении.
Смоделировать такое средство довольно просто и в большинстве
больших библиотек есть возможности динамических запросов о типе.
Здесь предлагается решение, обладающее тем полезным свойством,
что объем информации о типе можно произвольно расширять. Его можно
реализовать с помощью вызовов виртуальных функций, и оно может
входить в расширенные реализации С++.
Достаточно удобный интерфейс с любым средством, поставляющим
информацию о типе, можно задать с помощью следующих операций:
typeid static_type_info(type) // получить typeid для имени типа
typeid ptr_type_info(pointer) // получить typeid для указателя
typeid ref_type_info(reference) // получить typeid для ссылки
pointer ptr_cast(type,pointer) // преобразование указателя
reference ref_cast(type,reference) // преобразование ссылки
Пользователь класса может обойтись этими операциями, а создатель
класса должен предусмотреть в описаниях классов определенные
"приспособления", чтобы согласовать операции с реализацией
библиотеки.
Большинство пользователей, которым вообще нужна динамическая
идентификация типа, может ограничиться операциями приведения
ptr_cast() и ref_cast(). Таким образом пользователь отстраняется от
дальнейших сложностей, связанных с динамической идентификацией
типа. Кроме того, ограниченное использование динамической информации
о типе меньше всего чревато ошибками.
Если недостаточно знать, что операция приведения прошла успешно,
а нужен истинный тип (например, объектно-ориентированный
ввод-вывод), то можно использовать операции динамических запросов о типе:
static_type_info(), ptr_type_info() и ref_type_info(). Эти операции
возвращают объект класса typeid. Как было показано в примере с
set и slist_set, объекты класса typeid можно сравнивать. Для
большинства задач этих сведений о классе typeid достаточно. Но для
задач, которым нужна более полная информация о типе, в классе
typeid есть функция get_type_info():
class typeid {
friend class Type_info;
private:
const Type_info* id;
public:
typeid(const Type_info* p) : id(p) { }
const Type_info* get_type_info() const { return id; }
int operator==(typeid i) const ;
};
Функция get_type_info() возвращает указатель на неменяющийся (const)
объект класса Type_info из typeid. Существенно, что объект
не меняется: это должно гарантировать, что динамическая информация
о типе отражает статические типы исходной программы. Плохо, если
при выполнении программы некоторый тип может изменяться.
С помощью указателя на объект класса Type_info пользователь
получает доступ к информации о типе из typeid и, теперь его
программа начинает зависеть от конкретной системы динамических
запросов о типе и от структуры динамической информации о нем.
Но эти средства не входят в стандарт языка, а задать их с помощью
хорошо продуманных макроопределений непросто.
13.5.2 Класс Type_info
В классе Type_info есть минимальный объем информации для реализации
операции ptr_cast(); его можно определить следующим образом:
class Type_info {
const char* n; // имя
const Type_info** b; // список базовых классов
public:
Type_info(const char* name, const Type_info* base[]);
const char* name() const;
Base_iterator bases(int direct=0) const;
int same(const Type_info* p) const;
int has_base(const Type_info*, int direct=0) const;
int can_cast(const Type_info* p) const;
static const Type_info info_obj;
virtual typeid get_info() const;
static typeid info();
};
Две последние функции должны быть определены в каждом производном
от Type_info классе.
Пользователь не должен заботиться о структуре объекта Type_info, и
она приведена здесь только для полноты изложения. Строка, содержащая
имя типа, введена для того, чтобы дать возможность поиска информации
в таблицах имен, например, в таблице отладчика. С помощью нее а также
информации из объекта Type_info можно выдавать более осмысленные
диагностические сообщения. Кроме того, если возникнет потребность
иметь несколько объектов типа Type_info, то имя может служить уникальным
ключом этих объектов.
const char* Type_info::name() const
{
return n;
}
int Type_info::same(const Type_info* p) const
{
return this==p || strcmp(n,p->n)==0;
}
int Type_info::can_cast(const Type_info* p) const
{
return same(p) || p->has_base(this);
}
Доступ к информации о базовых классах обеспечивается функциями
bases() и has_base(). Функция bases() возвращает итератор, который
порождает указатели на базовые классы объектов Type_info, а с
помощью функции has_base() можно определить является ли заданный класс
базовым для другого класса. Эти функции имеют необязательный параметр
direct, который показывает, следует ли рассматривать все базовые классы
(direct=0), или только прямые базовые классы (direct=1). Наконец,
как описано ниже, с помощью функций get_info() и info() можно
получить динамическую информацию о типе для самого класса Type_info.
Здесь средство динамических запросов о типе сознательно
реализуется с помощью совсем простых классов. Так можно избежать
привязки к определенной библиотеке. Реализация в расчете на
конкретную библиотеку может быть иной. Можно, как всегда, посоветовать
пользователям избегать излишней зависимости от деталей реализации.
Функция has_base() ищет базовые классы с помощью имеющегося в
Type_info списка базовых классов. Хранить информацию о том, является
ли базовый класс частным или виртуальным, не нужно, поскольку
все ошибки, связанные с ограничениями доступа или неоднозначностью,
будут выявлены при трансляции.
class base_iterator {
short i;
short alloc;
const Type_info* b;
public:
const Type_info* operator() ();
void reset() { i = 0; }
base_iterator(const Type_info* bb, int direct=0);
~base_iterator() { if (alloc) delete[] (Type_info*)b; }
};
В следующем примере используется необязательный параметр для указания,
следует ли рассматривать все базовые классы (direct==0) или только прямые
базовые классы (direct==1).
base_iterator::base_iterator(const Type_info* bb, int direct)
{
i = 0;
if (direct) { // использование списка прямых базовых классов
b = bb;
alloc = 0;
return;
}
// создание списка прямых базовых классов:
// int n = число базовых
b = new const Type_info*[n+1];
// занести базовые классы в b
alloc = 1;
return;
}
const Type_info* base_iterator::operator() ()
{
const Type_info* p = &b[i];
if (p) i++;
return p;
}
Теперь можно задать операции запросов о типе с помощью макроопределений:
#define static_type_info(T) T::info()
#define ptr_type_info(p) ((p)->get_info())
#define ref_type_info(r) ((r).get_info())
#define ptr_cast(T,p) \
(T::info()->can_cast((p)->get_info()) ? (T*)(p) : 0)
#define ref_cast(T,r) \
(T::info()->can_cast((r).get_info()) \
? 0 : throw Bad_cast(T::info()->name()), (T&)(r))
Предполагается, что тип особой ситуации Bad_cast (Ошибка_приведения)
описан так:
class Bad_cast {
const char* tn;
// ...
public:
Bad_cast(const char* p) : tn(p) { }
const char* cast_to() { return tn; }
// ...
};
В разделе $$4.7 было сказано, что появление макроопределений
служит сигналом возникших проблем. Здесь проблема в том, что только
транслятор имеет непосредственный доступ к литеральным типам,
а макроопределения скрывают специфику реализации. По сути для хранения
информации для динамических запросов о типах предназначена таблица
виртуальных функций. Если реализация непосредственно поддерживает
динамическую идентификацию типа, то рассматриваемые операции можно
реализовать более естественно, эффективно и элегантно. В частности,
очень просто реализовать функцию ptr_cast(), которая преобразует
указатель на виртуальный базовый класс в указатель на его производные
классы.
13.5.3 Как создать систему динамических запросов о типе
Здесь показано, как можно прямо реализовать динамические запросы
о типе, когда в трансляторе таких возможностей нет. Это достаточно
утомительная задача и можно пропустить этот раздел, так как в нем
есть только детали конкретного решения.
Классы set и slist_set из $$13.3 следует изменить так, чтобы
с ними могли работать операции запросов о типе. Прежде всего, в
базовый класс set нужно ввести функции-члены, которые используют
операции запросов о типе:
class set {
public:
static const Type_info info_obj;
virtual typeid get_info() const;
static typeid info();
// ...
};
При выполнении программы единственным представителем объекта типа
set является set::info_obj, который определяется так:
const Type_info set::info_obj("set",0);
С учетом этого определения функции тривиальны:
typeid set::get_info() const { return &info_obj; }
typeid set::info() { return &info_obj; }
typeid slist_set::get_info() const { return &info_obj; }
typeid slist_set::info() { return &info_obj; }
Виртуальная функция get_info() будет предоставлять операции
ref_type_info() и ptr_type_info(), а статическая функция info()
- операцию static_type_info().
При таком построении системы запросов о типе основная трудность
на практике состоит в том, чтобы для каждого класса объект типа
Type_info и две функции, возвращающие указатель на этот объект,
определялись только один раз.
Нужно несколько изменить класс slist_set:
class slist_set : public set, private slist {
// ...
public:
static const Type_info info_obj;
virtual typeid get_info() const;
static typeid info();
// ...
};
static const Type_info* slist_set_b[]
= { &set::info_obj, &slist::info_obj, 0 };
const Type_info slist_set::info_obj("slist_set",slist_set_b);
typeid slist_set::get_info() const { return &info_obj; }
typeid slist_set::info() { return &info_obj; }
13.5.4 Расширенная динамическая информация о типе
В классе Type_info содержится только минимум информации, необходимой
для идентификации типа и безопасных операций приведения. Но поскольку
в самом классе Type_info есть функции-члены info() и get_info(),
можно построить производные от него классы, чтобы в динамике
определять, какие объекты Type_info возвращают эти функции. Таким
образом, не меняя класса Type_info, пользователь может получать
больше информации о типе с помощью объектов, возвращаемых функциями
dynamic_type() и static_type(). Во многих случаях дополнительная
информация должна содержать таблицу членов объекта:
struct Member_info {
char* name;
Type_info* tp;
int offset;
};
class Map_info : public Type_info {
Member_info** mi;
public:
static const Type_info info_obj;
virtual typeid get_info() const;
static typeid info();
// функции доступа
};
Класс Type_info вполне подходит для стандартной библиотеки. Это
базовый класс с минимумом необходимой информации, из которого
можно получать производные классы, предоставляющие больше информации.
Эти производные классы могут определять или сами пользователи, или
какие-то служебные программы, работающие с текстом на С++, или сами
трансляторы языка.
13.5.5 Правильное и неправильное использование динамической
информации о типе
Динамическая информация о типе может использоваться во многих
ситуациях, в том числе для: объектного ввода-вывода,
объектно-ориентированных баз данных, отладки. В тоже время
велика вероятность ошибочного использования такой информации.
Известно,что в языке Симула использование таких средств,
как правило, приводит к ошибкам. Поэтому эти средства не были
включены в С++. Слишком велик соблазн воспользоваться динамической
информацией о типе, тогда как правильнее вызвать виртуальную
функцию. Рассмотрим в качестве примера класс Shape из $$1.2.5.
Функцию rotate можно было задать так:
void rotate(const Shape& s)
// неправильное использование динамической
// информации о типе
{
if (ref_type_info(s)==static_type_info(Circle)) {
// для этой фигуры ничего не надо
}
else if (ref_type_info(s)==static_type_info(Triangle)) {
// вращение треугольника
}
else if (ref_type_info(s)==static_type_info(Square)) {
// вращение квадрата
}
// ...
}
Если для переключателя по типу поля мы используем динамическую
информацию о типе, то тем самым нарушаем в программе принцип
модульности и отрицаем сами цели объектно-ориентированного программирования.
К тому же это решение чревато ошибками: если в качестве
параметра функции будет передан объект производного от Circle класса,
то она сработает неверно (действительно, вращать круг (Circle)
нет смысла, но для объекта, представляющего производный класс, это
может потребоваться). Опыт показывает, что программистам, воспитанным
на таких языках как С или Паскаль, трудно избежать этой ловушки.
Стиль программирования этих языков требует меньше предусмотрительности,
а при создании библиотеки такой стиль можно просто считать
небрежностью.
Может возникнуть вопрос, почему в интерфейс с системой динамической
информации о типе включена условная операция приведения ptr_cast(), а не
операция is_base(), которая непосредственно определяется с помощью
операции has_base() из класса Type_info. Рассмотрим такой пример:
void f(dialog_box& db)
{
if (is_base(&db,dbox_w_str)) { // является ли db базовым
// для dbox_w-str?
dbox_w_str* dbws = (dbox_w_str*) &db;
// ...
}
// ...
}
Решение с помощью ptr_cast ($$13.5) более короткое, к тому же здесь
явная и безусловная операция приведения отделена от проверки в операторе
if, значит появляется возможность ошибки, неэффективности и даже
неверного результата. Неверный результат может возникнуть в тех
редких случаях, когда система динамической идентификации типа
распознает, что один тип является производным от другого, но
транслятору этот факт неизвестен, например:
class D;
class B;
void g(B* pb)
{
if (is_base(pb,D)) {
D* pb = (D*)pb;
// ...
}
// ...
}
Если транслятору пока неизвестно следующее описание класса D:
class D : public A, public B {
// ...
};
то возникает ошибка, т.к. правильное приведение указателя pb к D*
требует изменения значения указателя. Решение с операцией ptr_cast()
не сталкивается с этой трудностью, поскольку эта операция применима
только при условии, что в области видимости находятся описания
обеих ее параметров. Приведенный пример показывает, что операция
приведения для неописанных классов по сути своей ненадежна, но
запрещение ее существенно ухудшает совместимость с языком С.