
- •Глава 6 посвящена понятию производных классов, которое позволяет строить
- •Раздел 3.4 главы 2. Для обозначения справочного руководства применяется
- •1991 Г.Г. (такие как множественное наследование, статические функции-члены
- •1.1 Введение
- •1.2 Парадигмы программирования
- •1.2.1 Процедурное программирование
- •1.2.5 Объектно-ориентированное программирование
- •1.5 Поддержка объектно-ориентированного программирования
- •1.5.1 Механизм вызова
- •1.5.2 Проверка типа
- •1.5.3 Множественное наследование
- •1.6 Пределы совершенства
- •2.2 Имена
- •2.3.2 Неявное преобразование типа
- •2.4 Литералы
- •2.4.4 Строки
- •2.6. Экономия памяти
- •2.6.1 Поля
- •3.1.1 Анализатор
- •3.1.2 Функция ввода
- •3.2 Сводка операций
- •3.2.3 Инкремент и декремент
- •3.2.5 Преобразование типа
- •3.2.6 Свободная память
- •3.3.2 Оператор goto
- •4.1 Введение
- •4.3.1 Единственный заголовочный файл
- •4.3.2 Множественные заголовочные файлы
- •4.4 Связывание с программами на других языках
- •4.6.3 Передача параметров
- •5.1 Введение и краткий обзор
- •5.3.1 Альтернативные реализации
- •5.3.2 Законченный пример класса
- •Vector и matrix, мы могли бы обойтись без контроля индекса при
- •5.4.5 Указатели на члены
- •5.4.6 Структуры и объединения
- •5.5.3 Свободная память
- •5.5.5 Массивы объектов класса
- •6.1 Введение и краткий обзор
- •6.2.3 Иерархия классов
- •6.2.4 Поля типа
- •6.4.1 Монитор экрана
- •6.5 Множественное наследование
- •7.1 Введение
- •7.3 Пользовательские операции преобразования типа
- •7.3.2 Операции преобразования
- •7.3.3 Неоднозначности
- •7.5 Большие объекты
- •Void f2(t a) // вариант с контролем
- •Void f3(t a) // вариант с контролем
- •Inv() обращает саму матрицу m, а не возвращает новую, обратную m,
- •7.13 Предостережения
- •8.1 Введение
- •8.4.4 Неявная передача операций
- •8.4.5 Введение операций с помощью параметров шаблонного класса
- •8.7.1 Задание реализации с помощью параметров шаблона
- •9.1 Обработка ошибок
- •9.1.2 Другие точки зрения на особые ситуации
- •9.3.2 Производные особые ситуации
- •9.4.2 Предостережения
- •9.4.3 Исчерпание ресурса
- •9.4.4 Особые ситуации и конструкторы
- •9.5 Особые ситуации могут не быть ошибками
- •10.1 Введение
- •10.2 Вывод
- •10.2.1 Вывод встроенных типов
- •10.4.1.2 Поля вывода
- •10.4.1.4 Вывод целых
- •Istream - шаблон типа smanip, а smanip - двойник для ioss.
- •10.5.1 Закрытие потоков
- •10.5.2 Строковые потоки
- •X Целый параметр выдается в шестнадцатеричной записи;
- •11.1 Введение
- •11.2 Цели и средства
- •11.3 Процесс развития
- •11.3.1 Цикл развития
- •11.3.2 Цели проектирования
- •11.3.3 Шаги проектирования
- •11.3.3.1 Шаг 1: определение классов
- •11.3.3.2 Шаг 2: определение набора операций
- •11.3.3.3 Шаг 3: указание зависимостей
- •11.3.3.4 Шаг 4: определение интерфейсов
- •11.3.3.5 Перестройка иерархии классов
- •11.3.3.6 Использование моделей
- •11.3.4 Эксперимент и анализ
- •11.3.5 Тестирование
- •11.3.6 Сопровождение
- •11.3.7 Эффективность
- •11.4 Управление проектом
- •11.4.1 Повторное использование
- •11.4.2 Размер
- •11.4.3 Человеческий фактор
- •11.5 Свод правил
- •11.6 Список литературы с комментариями
- •12.1 Проектирование и язык программирования.
- •12.1.1 Игнорирование классов
- •12.1.2 Игнорирование наследования
- •12.1.3 Игнорирование статического контроля типов
- •12.1.4 Гибридный проект
- •12.2 Классы
- •12.2.1 Что представляют классы?
- •12.2.2 Иерархии классов
- •12.2.3 Зависимости в рамках иерархии классов.
- •Vertical_scrollbar или с помощью одного типа scrollbar, который
- •12.2.6 Отношения использования
- •12.2.7 Отношения внутри класса
- •12.3 Компоненты
- •12.4 Интерфейсы и реализации
- •12.5 Свод правил
- •13.1 Введение
- •13.2 Конкретные типы
- •13.4 Узловые классы
- •1, 2, 6 И 7. Класс, который не удовлетворяет условию 6, походит
- •13.5.1 Информация о типе
- •13.6 Обширный интерфейс
- •13.7 Каркас области приложения
- •13.8 Интерфейсные классы
- •13.10 Управление памятью
11.3.3.3 Шаг 3: указание зависимостей
Уточните определение классов, указав их зависимости от других классов.
Различные виды зависимостей обсуждаются в $$12.2. Основными по
отношению к проектированию следует считать отношения наследования
и использования. Оба предполагают понимание того, что значит для
класса отвечать за определенное свойство системы. Отвечать за что-либо
не означает, что класс должен содержать в себе всю информацию, или,
что его функции-члены должны сами проводить все необходимые операции.
Как раз наоборот, каждый класс, имеющий определенный уровень
ответственности, организует работу, перепоручая ее в виде
подзадач другим классам, которые имеют меньший уровень ответственности.
Но надо предостеречь, что злоупотребление этим приемом приводит
к неэффективным и плохо понимаемым проектам, поскольку
происходит размножение классов и объектов до такой степени, что
вместо реальной работы производится только серия запросов на
ее выполнение. То, что можно сделать в данном месте, следует
сделать.
Необходимость учесть отношения наследования и использования
на этапе проектирования (а не только в процессе реализации) прямо
вытекает из того, что классы представляют определенные понятия.
Отсюда также следует, что именно компонент (т.е. множество
связанных классов), а не отдельный класс, являются единицей
проектирования.
11.3.3.4 Шаг 4: определение интерфейсов
Определите интерфейсы классов. На этой стадии проектирования не нужно
рассматривать приватные функции. Вопросы реализации, возникающие на
стадии проектирования, лучше всего обсуждать на шаге 3 при
рассмотрении различных зависимостей. Более того, существует
золотое правило: если класс не допускает по крайней мере двух
существенно отличающихся реализаций, то что-то явно не в порядке с этим
классом, это просто замаскированная реализация, а не представление
абстрактного понятия. Во многих случаях для ответа на вопрос:
"Достаточно ли интерфейс класса независим от реализации?"- надо
указать, возможна ли для класса схема ленивых вычислений.
Отметим, что общие базовые классы и друзья (friend) являются
частью общего интерфейса класса (см. $$5.4.1 и $$12.4). Полезным
упражнением может быть определение раздельного интерфейса для
классов-наследников и всех остальных классов с помощью разбиения
интерфейса на общую и закрытые части.
Именно на этом шаге следует продумать и описать точные определения
типов аргументов. В идеале желательно иметь максимальное число
интерфейсов со статическими типами, относящимися к области приложения
(см. $$12.1.3 и $$12.4).
При определении интерфейсов следует обратить внимание на те
классы, где набор операций представлен более, чем на одном уровне
абстракции. Например, в классе file у некоторых функций-членов
аргументы имеют тип file_descriptor (дескриптор_файла), а у других
аргументы - строка символов, которая обозначает имя файла.
Операции с file_descriptor работают на другом уровне (меньшем)
абстракции, чем операции с именем файла, так что даже странно,
что они относятся к одному классу. Возможно, было бы лучше иметь
два класса: один представляет понятие дескриптора файла, а
другой - понятие имени файла. Обычно все операции класса должны
представлять понятия одного уровня абстракции. Если это не так,
то стоит подумать о реорганизации и его, и связанных с ним классов.