- •Глава 6 посвящена понятию производных классов, которое позволяет строить
- •Раздел 3.4 главы 2. Для обозначения справочного руководства применяется
- •1991 Г.Г. (такие как множественное наследование, статические функции-члены
- •1.1 Введение
- •1.2 Парадигмы программирования
- •1.2.1 Процедурное программирование
- •1.2.5 Объектно-ориентированное программирование
- •1.5 Поддержка объектно-ориентированного программирования
- •1.5.1 Механизм вызова
- •1.5.2 Проверка типа
- •1.5.3 Множественное наследование
- •1.6 Пределы совершенства
- •2.2 Имена
- •2.3.2 Неявное преобразование типа
- •2.4 Литералы
- •2.4.4 Строки
- •2.6. Экономия памяти
- •2.6.1 Поля
- •3.1.1 Анализатор
- •3.1.2 Функция ввода
- •3.2 Сводка операций
- •3.2.3 Инкремент и декремент
- •3.2.5 Преобразование типа
- •3.2.6 Свободная память
- •3.3.2 Оператор goto
- •4.1 Введение
- •4.3.1 Единственный заголовочный файл
- •4.3.2 Множественные заголовочные файлы
- •4.4 Связывание с программами на других языках
- •4.6.3 Передача параметров
- •5.1 Введение и краткий обзор
- •5.3.1 Альтернативные реализации
- •5.3.2 Законченный пример класса
- •Vector и matrix, мы могли бы обойтись без контроля индекса при
- •5.4.5 Указатели на члены
- •5.4.6 Структуры и объединения
- •5.5.3 Свободная память
- •5.5.5 Массивы объектов класса
- •6.1 Введение и краткий обзор
- •6.2.3 Иерархия классов
- •6.2.4 Поля типа
- •6.4.1 Монитор экрана
- •6.5 Множественное наследование
- •7.1 Введение
- •7.3 Пользовательские операции преобразования типа
- •7.3.2 Операции преобразования
- •7.3.3 Неоднозначности
- •7.5 Большие объекты
- •Void f2(t a) // вариант с контролем
- •Void f3(t a) // вариант с контролем
- •Inv() обращает саму матрицу m, а не возвращает новую, обратную m,
- •7.13 Предостережения
- •8.1 Введение
- •8.4.4 Неявная передача операций
- •8.4.5 Введение операций с помощью параметров шаблонного класса
- •8.7.1 Задание реализации с помощью параметров шаблона
- •9.1 Обработка ошибок
- •9.1.2 Другие точки зрения на особые ситуации
- •9.3.2 Производные особые ситуации
- •9.4.2 Предостережения
- •9.4.3 Исчерпание ресурса
- •9.4.4 Особые ситуации и конструкторы
- •9.5 Особые ситуации могут не быть ошибками
- •10.1 Введение
- •10.2 Вывод
- •10.2.1 Вывод встроенных типов
- •10.4.1.2 Поля вывода
- •10.4.1.4 Вывод целых
- •Istream - шаблон типа smanip, а smanip - двойник для ioss.
- •10.5.1 Закрытие потоков
- •10.5.2 Строковые потоки
- •X Целый параметр выдается в шестнадцатеричной записи;
- •11.1 Введение
- •11.2 Цели и средства
- •11.3 Процесс развития
- •11.3.1 Цикл развития
- •11.3.2 Цели проектирования
- •11.3.3 Шаги проектирования
- •11.3.3.1 Шаг 1: определение классов
- •11.3.3.2 Шаг 2: определение набора операций
- •11.3.3.3 Шаг 3: указание зависимостей
- •11.3.3.4 Шаг 4: определение интерфейсов
- •11.3.3.5 Перестройка иерархии классов
- •11.3.3.6 Использование моделей
- •11.3.4 Эксперимент и анализ
- •11.3.5 Тестирование
- •11.3.6 Сопровождение
- •11.3.7 Эффективность
- •11.4 Управление проектом
- •11.4.1 Повторное использование
- •11.4.2 Размер
- •11.4.3 Человеческий фактор
- •11.5 Свод правил
- •11.6 Список литературы с комментариями
- •12.1 Проектирование и язык программирования.
- •12.1.1 Игнорирование классов
- •12.1.2 Игнорирование наследования
- •12.1.3 Игнорирование статического контроля типов
- •12.1.4 Гибридный проект
- •12.2 Классы
- •12.2.1 Что представляют классы?
- •12.2.2 Иерархии классов
- •12.2.3 Зависимости в рамках иерархии классов.
- •Vertical_scrollbar или с помощью одного типа scrollbar, который
- •12.2.6 Отношения использования
- •12.2.7 Отношения внутри класса
- •12.3 Компоненты
- •12.4 Интерфейсы и реализации
- •12.5 Свод правил
- •13.1 Введение
- •13.2 Конкретные типы
- •13.4 Узловые классы
- •1, 2, 6 И 7. Класс, который не удовлетворяет условию 6, походит
- •13.5.1 Информация о типе
- •13.6 Обширный интерфейс
- •13.7 Каркас области приложения
- •13.8 Интерфейсные классы
- •13.10 Управление памятью
10.4.1.2 Поля вывода
Функция width() устанавливает минимальное число символов, использующееся
в последующей операции вывода числа или строки. Так в результате
следующих операций
cout.width(4);
cout << '(' << 12 << ')';
получим число 12 в поле размером 4 символа, т.е.
( 12)
Заполнение поля заданными символами или выравнивание можно установить с
помощью функции fill(), например:
cout.width(4);
cout.fill('#');
cout << '(' << "ab" << ')';
напечатает
(##ab)
По умолчанию поле заполняется пробелами, а размер поля по умолчанию
есть 0, что означает "столько символов, сколько нужно". Вернуть размеру
поля стандартное значение можно с помощью вызова
cout.width(0); // ``столько символов, сколько надо''
Функция width() задает минимальное число символов. Если появится больше
символов, они будут напечатаны все, поэтому
cout.width(4);
cout << '(' << "121212" << ")\n";
напечатает
(121212)
Причина, по которой разрешено переполнение поля, а не усечение вывода,
в том, чтобы избежать зависания при выводе. Лучше получить правильную
выдачу, выглядящую некрасиво, чем красивую выдачу, являющуюся
неправильной.
Вызов width() влияет только на одну следующую за ним операцию
вывода, поэтому
cout.width(4);
cout.fill('#');
cout << '(' << 12 << "),(" << '(' <<12 << ")\n";
напечатает
(##12),(12)
а не
(##12),(##12)
как можно было бы ожидать. Однако, заметьте, что если бы влияние
распространялось на все операции вывода чисел и строк, получился бы
еще более неожиданный результат:
(##12#),(##12#
)
С помощью стандартного манипулятора, показанного в 10.4.2.1, можно более
элегантно задавать размера поля вывода.
10.4.1.3 Состояние формата
В классе ios содержится состояние формата, которое управляется
функциями flags() и setf(). По сути эти функции нужны, чтобы
установить или отменить следующие флаги:
class ios {
public:
// управляющие форматом флаги:
enum {
skipws=01, // пропуск обобщенных пробелов для input
// поле выравнивания:
left=02, // добавление перед значением
right=04, // добавление после значения
internal=010, // добавление между знаком и значением
// основание целого:
dec=020, // восьмеричное
oct=040, // десятичное
hex=0100, // шестнадцатеричное
showbase=0200, // показать основание целого
showpoint=0400, // выдать нули в конце
uppercase=01000, // 'E', 'X' , а не 'e', 'x'
showpos=02000, // '+' для положительных чисел
// запись числа типа float:
scientific=04000, // .dddddd Edd
fixed=010000, // dddd.dd
// сброс в выходной поток:
unitbuf=020000, // после каждой операции
stdio=040000 // после каждого символа
};
//...
};
Смысл флагов будет разъяснен в последующих разделах. Конкретные
значения флагов зависят от реализации и даны здесь только для того,
чтобы избежать синтаксически неверных конструкций.
Определение интерфейса как набора флагов и операций для их
установки или отмены - это оцененный временем, хотя и несколько
устаревший прием. Основное его достоинство в том, что пользователь
может собрать воедино набор флагов, например, так:
const int my_io_options =
ios::left|ios::oct|ios::showpoint|ios::fixed;
Такое множество флагов можно задавать как параметр одной операции
cout.flags(my_io_options);
а также просто передавать между функциями одной программы:
void your_function(int ios_options);
void my_function()
{
// ...
your_function(my_io_options);
// ...
}
Множество флагов можно установить с помощью функции flags(), например:
void your_function(int ios_options)
{
int old_options = cout.flags(ios_options);
// ...
cout.flags(old_options); // reset options
}
Функция flags() возвращает старое значение множества флагов. Это
позволяет переустановить значения всех флагов, как показано выше,
а также задать значение отдельному флагу. Например вызов
myostream.flags(myostream.flags()|ios::showpos);
заставляет класс myostream выдавать положительные числа со знаком
+ и, в то же время, не меняет значения других флагов. Получается
старое значение множества флагов, к которому добавляется с помощью
операции | флаг showpos. Функция setf() делает то же самое,
поэтому эквивалентная запись имеет вид
myostream.setf(ios::showpos);
После установки флаг сохраняет значение до явной отмены.
Все-таки управление вводом-выводом с помощью установки и отмены
флагов - грубое и ведущее к ошибкам решение. Если только вы тщательно
не изучите свое справочное руководство и не будете применять флаги
только в простых случаях, как это делается в последующих разделах, то
лучше использовать манипуляторы (описанные в 10.4.2.1). Приемы работы
с состоянием потока лучше изучить на примере реализации класса, чем
изучая интерфейс класса.
