Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VM.docx
Скачиваний:
6
Добавлен:
27.09.2019
Размер:
1.28 Mб
Скачать

Замена переменных в тройном интеграле.

, где |I| - модуль Якобина.

Геометрический смысл: |I| -коэффициент растяжения объёма при отображении области V на область V

В цилиндрических координатах:

В сферических координатах:

Билет 35.

Поверхностный интеграл1-го рода (ПОВИ-1).

, -гладкая(в каждой точке существует касательная плоскость). Пусть такова, что прямая параллельная OZ пересекает её не более чем в 1-ой точке. Тогда z=f(x,y);

 Поверхностный интеграл 1-го рода (Пови-1)

     Сведение к двойному

1. Поверхность s задана уравнением

где - величина угла между нормалью к поверхности и положительным направлением оси Oz.

2. Поверхность s задана параметрически:

где

или

где

Билет 36.

Интеграл по ориентированной фигуре от векторной ф-ции.

Векторная ф-ция 3х переменных x,y,z, определенной на фигуре Ф. Ф-ции P,Q,R называются координатами . Фигура Ф называется ориентированной, если в каждой ее точке М задан некоторый вектор , характеризующий эту фигуру. Диния называется ориентированной, если на ней выбрано направление перемещения.

Гладкая поверхность называется двусторонняя, если нормаль к ней при обходе по замкнутому контуру, лежащему на поверхности и не имеющему общих точек с ее границей, возвращается к своему первоначальному положению.

1). ; 2). ; 3). ; 4).

5). ; n-я интегральная сумма для векторной ф-ции a(M) по ориентированной с помощью вектора P(n) фигуре Ф. ; 6). (*)

Если (*) существует, конечен и не зависит от способа построения интегральной суммы , то он называется интегралом по орентированной фигуре Ф от векторной ф-ции a(M).

P(x,y,z) Q(x,y,z) R(x,y,z) a=(P,Q,R)

Если ф-ции P,Q,R непрерывны на гладкой, ограниченной, содержащей граничные точки ориентированной фигуре Ф, то интеграл существует.

Частные случаи интегралов по ориентированной фигуре.

Свойства интеграла по фигуре от векторной ф-ции.

1). ; 2). , c=const

3). ; 4).

Билет 37

Механический смысл КРИ-2:

(М) – вектор силы; L=AB; Работа силы по перемещению вдоль L. Если (М) – переменная сила, а AB – кривая, то: - настолько малы, что перемещение на кусочек по направлению совпадает с единичным касательным вектором. -произвольная точка. ( ) – постоянная сила. =( ( ), )=( ( ), )

!!! С механической точки зрения КРИ-2 представляет собой работу силы вдоль линии L.

Скалярная форма кри-2

Вычисление КРИ-2

,

Вывод: в общем случае КРИ-2 зависит от пути интегрирования.

Билет 38.

Формула Грина.

Область наз. односвязной если в ней любой замкнутый контур может быть стянут в точку с помощью непрерывной деформации, при к-й не границы области не пересекаютя.

Область D наз. односвяз., если каков бы ни был замкн. контур l , лежащий внутри этой области, ограниченная этим контуром конечн. часть пл-ти целиком принадл. D.

Порстая область: замкн. пл-ть D (обл. вместе с её границами) – её можно разбить на конечное число как y- так и x- трапецивидных областей.

Например: круг, прямоугольник, кольцо.

Теор. Грина: пусть P(x,y), Q(x,y) и и непрерывны в простой области D тогда

где L – граница области D, к-я обходится в положительном направлении.

Док-во

Предположим D – односвяз. область, огр. L – полож. ориентир. Предположим, что оюл. D такова, что прямые параллельн. осям пересекают ее не более, чем в 2-х точках.

Для I2 – аналогично.

Формула Грина имеет место для любой простой области.

Если контур обходится в обратном направлении, то перед двойным интегралом ставится «-».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]