
- •Энергия и импульс фотона. Формула Планка для спектра излучения черного тела.
- •Квантовая теория фотоэффекта. Эффект Комптона.
- •Давление света. Опыты, подтверждающие давление света. Корпускулярно-волновой дуализм излучения.
- •Свойства волн де Бройля и их статистическая интерпретация. Опыты, подтверждающие волновые свойства микрочастиц.
- •Волновой пакет микрочастицы. Соотношение неопределенностей Гейзенберга.
- •Опыты Резерфорда по рассеянию -частиц. Формула Резерфорда. Модель атома Резерфорда-Бора.
- •З акономерности в спектрах атома водорода. Серии Лаймана, Бальмера, Пашена. Комбинационный принцип Ритца.
- •Дискретность квантовых состояний атома. Постулаты Бора. Опыты Франка-Герца.
- •Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
- •Волновая функция микрочастицы и ее свойства. Стационарное и нестационарное уравнение Шредингера.
- •Частица в одномерной бесконечно глубокой потенциальной яме: уравнение Шредингера, его решение, уровни энергии частицы.
- •Прохождение микрочастицы через потенциальный барьер. Туннельный эффект.
- •14. Туннельный эффект. Коэффициент прозрачности барьера
- •Гармонический осциллятор. Квантовомеханическое описание атома водорода.
- •Уровни энергии и схема термов щелочных металлов. Дублетная структура спектров щелочных металлов.
- •Магнитный и механический моменты электронов. Спин. Опыты Штерна и Герлаха.
- •Результирующий механический момент многоэлектронного атома. J-j и l-s связь.
- •Нормальный и аномальный эффекты Зеемана. Фактор Ланде.
- •Нормальный эффект Зеемана
- •Аномальный эффект Зеемана
- •Электронные оболочки атома и их заполнение. Принцип Паули. Правила Хунда.
- •Количество электронов в каждой оболочке
- •Тормозное и характеристическое рентгеновское излучение. Закон Мозли.
- •Физические особенности в молекулярных спектрах. Энергия и спектр двухатомной молекулы. P-, q- и r-ветви.
- •Одномерный кристалл Кронига-Пенни. Понятие о зонной теории твердых тел. Фермионы и бозоны.
- •Расщепление энергетических уровней и образование зон. Различие между металлами, полупроводниками и диэлектриками в зонной теории.
- •Свойства и характеристика ядер. Нейтрон и протон, их свойства. Энергия связи ядра.
- •Свойства и модель ядерных сил. Капельная модель ядра. Формула Вейцзеккера для энергии связи. Оболочечная модель ядра.
- •Искусственная и естественная радиоактивность. Основной закон радиоактивного распада. Активность. Правила смещения.
- •Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
- •Основные закономерности -распада и его свойства. Нейтрино. Электронный захват. (см 27)
- •Получение трансурановых элементов. Основные закономерности реакций деления ядер.
- •Цепная реакция деления. Управляемая цепная реакция. Ядерный реактор.
- •Термоядерный синтез. Энергия звезд. Управляемый термоядерный синтез.
- •Источники и методы регистрации элементарных частиц. Типы взаимодействий и классы элементарных частиц. Античастицы.
- •Законы сохранения при превращениях элементарных частиц. Понятие о кварках.
- •Физическое, химическое и биологическое воздействие ионизирующего излучения.
- •Физические свойства ионизирующих излучений
- •Биологическое действие ионизирующих излучений
- •Дозы ионизирующих излучений и единицы их измерений. Радиационная безопасность.
- •Основные принципы обеспечения радиационной безопасности
- •Закономерности излучения черного тела. Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
З акономерности в спектрах атома водорода. Серии Лаймана, Бальмера, Пашена. Комбинационный принцип Ритца.
Дискретность квантовых состояний атома. Постулаты Бора. Опыты Франка-Герца.
Модель Бора выявила истинное значение спектральных законов и позволила установить, как эти законы отражают квантовый характер внутренней структуры атома - устойчивость структуры атома оказалась неразрывно связанной с существованием квантов. В модели Бора каждый атом обладает некоторой последовательностью квантовых (стационарных) состояний. Каждый вид атома имеет свою последовательность квантовых значений энергии, соответствующих различным возможным стационарным состояниям.
Постулаты Бора:
1) В атоме существует ряд дискретных стационарных состояний, которым соответствуют определенные значения энергии атома E1, E2 и т.д. В стационарном состоянии атом не излучает и не поглощает энергии.
2) Переходя из одного стационарного состояния в другое, атом излучает и поглощает квант энергии ε = hv, равный разности энергий En и En' двух стационарных состояний: hv = En' - En .
Атом водорода (Z = 1) имеет наиболее простой линейчатый спектр излучения. Частоты спектральных линий для атома водорода и водородоподобных атомов определяются по формуле: v = Rv(1/n2 – 1/n'2), где Rv = Z2me4/8ε02h3 = 3,29 · 1015 с-1 – постоянная Ридберга.
Также эта формула может быть записана через длину волны λ: 1/λ = Rλ(1/n2 – 1/n'2), где Rλ = 1,097 · 107 м-1.
Недостатки теории Бора:
- не смогла объяснить интенсивность спектральных линий.
- справедлива только для водородоподобных атомов и не работает для атомов, следующих за ним в таблице Менделеева.
- теория Бора логически противоречива: не является ни классической, ни квантовой. В системе двух уравнений, лежащих в её основе, одно - уравнение движения электрона - классическое, другое - уравнение квантования орбит - квантовое.
Опыт Франка - Герца - опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома.
В опыте наблюдался монотонный рост I при увеличении ускоряющего потенциала вплоть до 4,9 в, то есть электроны с энергией Е < 4,9 эв испытывали упругие соударения с атомами Hg и внутренняя энергия атомов не менялась. При значении V = 4,9 в (и кратных ему значениях 9,8 в, 14,7 в) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, т. е. энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эв значениях энергии электроны могут испытывать неупругие столкновения несколько раз.
Таким образом, опыт Франка - Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электромагнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора.
Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
состояния играют важную роль в квантовых приборах.
Переходы, которые совершаются в системах микрочастиц, классифицируются по различным признакам. Основными видами переходов являются спонтанные, вынужденные и релаксационные.
Спонтанные переходы - самопроизвольные излучательные квантовые переходы из верхнего энергетического состояния в нижнее. Электромагнитное поле спонтанного излучения характеризуется тремя параметрами: центральной частотой спектральной линии νπ, спектральной плотностью излучения S(v) и мощностью излучения. Центральная частота излучения называется также частотой квантового перехода и частотой спектральной линии и определяется постулатом Бора:
, (10.1)
где W2 и W1 - энергии верхнего и нижнего уровней соответственно; h -постоянная Планка.
Определим теперь мощность спонтанного излучения. Здесь и в дальнейшем будем рассматривать процессы в единице объема вещества.
Пусть в рассматриваемом объеме содержится N2 частиц с энергией W2 и N1 частиц с энергией W1. Число частиц в единице объема с данной энергией называется населенностью уровня. Спонтанные переходы носят случайный характер и оцениваются вероятностью перехода в единицу времени A21, которая называется коэффициентом Эйнштейна для спонтанных переходов. Если населенность уровня Ν2 остается неизменной во времени (или изменяется незначительно), то число переходов в единицу времени с уровня W2 на уровень W1 составит
n21 = Ν2Α21. (10.2)
При каждом переходе выделяется энергия W2-W1= hv21 поэтому мощность излучения
Р21 = n21(W2 -W1) = N2A21hv21. (10.3)
Между коэффициентом Эйнштейна и средним временем жизни частицы на уровне (время, за которое при отсутствии внешнего возбуждения населенность уровня падает в е раз) существует простая связь:
A21=1/2. (10.4)
В системе частиц, имеющих несколько энергетических уровней, возможны спонтанные переходы частиц с данного уровня на нижние (рис. 10.2). Полная вероятность Aj спонтанного перехода с уровня j на все нижние уровни i равна сумме вероятностей отдельных спонтанных переходов Аji:
. (10.5)
Уровни, для которых вероятность спонтанных переходов очень мала, называют метастабильными.
Время жизни на уровне j в многоуровневой системе определяется аналогично (10.4) с учетом (10.5):
(10.6)
Среднее время жизни на уровне составляет величину в пределах от единицы до сотен наносекунд. На метастабильных уровнях время жизни составляет миллисекунды.
Рис. 10.2 Спонтанные переходы частиц с одного уровня на другой
Вынужденные переходы - это квантовые переходы частиц под действием внешнего электромагнитного поля, частота которого совпадает или близка к частоте перехода. При этом возможны переходы с верхнего уровня 2 на нижний 1 и с нижнего на верхний. В первом случае под действием внешнего электромагнитного поля с частотой v21 происходит вынужденное испускание кванта энергии. Особенность вынужденного испускания состоит в том, что появившийся фотон полностью идентичен фотону внешнего поля. Вынужденное излучение имеет такие же частоту, фазу, направление распространения и поляризацию, как и вынуждающее излучение. Поэтому вынужденное излучение увеличивает энергию электромагнитного поля с частотой перехода v21. Это служит предпосылкой для создания квантовых усилителей и генераторов.
При каждом вынужденном переходе снизу вверх затрачивается квант энергии внешнего поля hv21.
Вынужденные переходы (как и спонтанные) имеют статистический характер. Поэтому вводятся вероятностные коэффициенты: W21 - вероятность вынужденного перехода сверху вниз и W12 - снизу вверх в 1с. Эти вероятности пропорциональны объемной плотности энергии внешнего поля uv в единичном спектральном интервале на частоте перехода и определяются соотношениями
W21=B21 uv ,
W12=B12 uv , (10.7)
где B21 и B12 - коэффициенты Эйнштейна для вынужденных переходов с излучением и поглощением энергии соответственно.
Коэффициенты B21 и Β12 имеют смысл вероятностей вынужденных переходов в 1 с при единичной объемной плотности энергии внешнего поля (uv = 1 Дж см -3c -1).
Число вынужденных переходов сверху вниз с излучением энергии в единицу времени в единице объема пропорционально вероятности W21 и населенности верхнего уровня N2, т.е. с учетом (10.7)
n21=W21 N2=B21 uv N2 . (10.8)
Аналогично при тех же условиях число вынужденных переходов снизу вверх с поглощением энергии
n12=W12 N1=B12 uv N2 . (10.9)
В приборах СВЧ-диапазона, работающих на «низкой» частоте, вероятность спонтанных переходов мала по сравнению с вероятностью вынужденных переходов и их роль невелика. В лазерах же, работающих на оптических частотах, пренебрегать спонтанными переходами нельзя.
Спектральная плотность излучения — характеристика спектра излучения, равная отношению интенсивности (плотности потока) излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению.
Энергия светового пучка неравномерно распределена по волнам различных длин. Зависимость частоты от длины волны описывается как λv=c
Для характеристики распределения излучения по частотам используют интенсивность, приходящуюся на единичный интервал частот. Эта величина называется спектральной плотностью интенсивности излучения и обозначается как I(v).
Различным видимым цветам соответствуют различные спектральные плотности видимого света.
Принцип работы лазера. Типы лазеров. Свойства лазерного излучения. С 586.
Ла́зер— усиление света посредством вынужденного излучения), опти́ческий ква́нтовый генера́тор — устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излученияКлассификация лазеров
Основная статья: Виды лазеров
Твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла). В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырёхуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах[18].
Полупроводниковые лазеры. Формально также являются твердотельными, но традиционно выделяются в отдельную группу, поскольку имеют иной механизм накачки (инжекция избыточных носителей заряда через p-n переход или гетеропереход, электрический пробой в сильном поле, бомбардировка быстрыми электронами), а квантовые переходы происходят между разрешёнными энергетическими зонами, а не между дискретными уровнями энергии. Полупроводниковые лазеры — наиболее употребительный в быту вид лазеров[24]. Кроме этого применяются в спектроскопии, в системах накачки других лазеров, а также в медицине (см. фотодинамическая терапия).
Лазеры на красителях. Тип лазеров, использующий в качестве активной среды раствор флюоресцирующих с образованием широких спектров органических красителей. Лазерные переходы осуществляются между различными колебательными подуровнями первого возбуждённого и основного синглетных электронных состояний. Накачка оптическая, могут работать в непрерывном и импульсном режимах. Основной особенностью является возможность перестройки длины волны излучения в широком диапазоне. Применяются в спектроскопических исследованиях[25].
Газовые лазеры — лазеры, активной средой которых является смесь газов и паров. Отличаются высокой мощностью, монохроматичностью, а также узкой направленностью излучения. Работают в непрерывном и импульсном режимах. В зависимости от системы накачки газовые лазеры разделяют на газоразрядные лазеры, газовые лазеры с оптическим возбуждением и возбуждением заряженными частицами (например, лазеры с ядерной накачкой[26], в начале 80-х проводились испытания систем противоракетной обороны на их основе[27], однако, без особого успеха[28]), газодинамические и химические лазеры. По типу лазерных переходов различают газовые лазеры на атомных переходах, ионные лазеры, молекулярные лазеры на электронных, колебательных и вращательных переходах молекул и эксимерные лазеры[29].
Газодинамические лазеры — газовые лазеры с тепловой накачкой, инверсия населённостей в которых создаётся между возбуждёнными колебательно-вращательными уровнями гетероядерных молекул путём адиабатического расширения движущейся с высокой скоростью газовой смеси (чаще N2+CO2+He или N2+CO2+Н2О, рабочее вещество — CO2)[30].
Эксимерные лазеры — разновидность газовых лазеров, работающих на энергетических переходах эксимерных молекул (димерах благородных газов, а также их моногалогенидов), способных существовать лишь некоторое время в возбуждённом состоянии. Накачка осуществляется пропусканием через газовую смесь пучка электронов, под действием которых атомы переходят в возбуждённое состояние с образованием эксимеров, фактически представляющих собой среду с инверсией населённостей. Эксимерные лазеры отличаются высокими энергетическими характеристикам, малым разбросом длины волны генерации и возможности её плавной перестройки в широком диапазоне[31].
Химические лазеры — разновидность лазеров, источником энергии для которых служат химические реакции между компонентами рабочей среды (смеси газов). Лазерные переходы происходят между возбуждёнными колебательно-вращательными и основными уровнями составных молекул продуктов реакции. Для осуществления химических реакций в среде необходимо постоянное присутствие свободных радикалов, для чего используются различные способы воздействия на молекулы для их диссоциации. Отличаются широким спектром генерации в ближней ИК-области, большой мощностью непрерывного и импульсного излучения[32].
Лазеры на свободных электронах — лазеры, активной средой которых является поток свободных электронов, колеблющихся во внешнем электромагнитном поле (за счёт чего осуществляется излучение) и распространяющихся с релятивистской скоростью в направлении излучения. Основной особенностью является возможность плавной широкодиапазонной перестройки частоты генерации. Различают убитроны и скаттроны, накачка первых осуществляется в пространственно-периодическом статическом поле ондулятора, вторых — мощным полем электромагнитной волны. Существуют также мазеры на циклотронном резонансе и строфотроны, основанные на тормозном излучении электронов, а также флиматроны, использующие эффект черенковского и переходного излучений. Поскольку каждый электрон излучает до 108 фотонов, лазеры на свободных электронах являются, по сути, классическими приборами и описываются законами классической электродинамики[33].
Квантовые каскадные лазеры − полупроводниковые лазеры, которые излучают в среднем и дальнем инфракрасном диапазоне[34]. В отличие от обычных полупроводниковых лазеров, которые излучают посредством вынужденных переходов между разрешенными электронными и дырочными уровнями, разделенными запрещенной зоной полупроводника, излучение квантовых каскадных лазеров возникает при переходе электронов между слоями гетероструктуры полупроводника и состоит из двух типов лучей, причем вторичный луч обладает весьма необычными свойствами и не требует больших затрат энергии[35].
Волоконный лазер — лазер, резонатор которого построен на базе оптического волокна, внутри которого полностью или частично генерируется излучение. При полностью волоконной реализации такой лазер называется цельноволоконным, при комбинированном использовании волоконных и других элементов в конструкции лазера он называется волоконно-дискретным или гибридным.
Вертикально-излучающие лазеры (VCSEL) — «Поверхностно-излучающий лазер с вертикальным резонатором» — разновидность диодного полупроводникового лазера, излучающего свет в направлении, перпендикулярном поверхности кристалла, в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности пластин.
Другие виды лазеров, развитие принципов которых на данный момент является приоритетной задачей исследований (рентгеновские лазеры[36], гамма-лазеры[37] и др.).
С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё не известных проблем»[38]. В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту (проигрыватели компакт-дисков, лазерные принтеры, считыватели штрих-кодов, лазерные указки и пр.). В промышленности лазеры используются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые невозможно сварить обычными способами (к примеру, керамику и металл). Луч лазера может быть сфокусирован в точку диаметром порядка микрона, что позволяет использовать его в микроэлектронике (так называемое лазерное скрайбирование)[39]. Лазеры используются для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости. Широкое применение получила также лазерная маркировка промышленных образцов и гравировка изделий из различных материалов[40]. При лазерной обработке материалов на них не оказывается механическое воздействие, поэтому возникают лишь незначительные деформации. Кроме того, весь технологический процесс может быть полностью автоматизирован. Лазерная обработка потому характеризуется высокой точностью и производительностью