
- •Энергия и импульс фотона. Формула Планка для спектра излучения черного тела.
- •Квантовая теория фотоэффекта. Эффект Комптона.
- •Давление света. Опыты, подтверждающие давление света. Корпускулярно-волновой дуализм излучения.
- •Свойства волн де Бройля и их статистическая интерпретация. Опыты, подтверждающие волновые свойства микрочастиц.
- •Волновой пакет микрочастицы. Соотношение неопределенностей Гейзенберга.
- •Опыты Резерфорда по рассеянию -частиц. Формула Резерфорда. Модель атома Резерфорда-Бора.
- •З акономерности в спектрах атома водорода. Серии Лаймана, Бальмера, Пашена. Комбинационный принцип Ритца.
- •Дискретность квантовых состояний атома. Постулаты Бора. Опыты Франка-Герца.
- •Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
- •Волновая функция микрочастицы и ее свойства. Стационарное и нестационарное уравнение Шредингера.
- •Частица в одномерной бесконечно глубокой потенциальной яме: уравнение Шредингера, его решение, уровни энергии частицы.
- •Прохождение микрочастицы через потенциальный барьер. Туннельный эффект.
- •14. Туннельный эффект. Коэффициент прозрачности барьера
- •Гармонический осциллятор. Квантовомеханическое описание атома водорода.
- •Уровни энергии и схема термов щелочных металлов. Дублетная структура спектров щелочных металлов.
- •Магнитный и механический моменты электронов. Спин. Опыты Штерна и Герлаха.
- •Результирующий механический момент многоэлектронного атома. J-j и l-s связь.
- •Нормальный и аномальный эффекты Зеемана. Фактор Ланде.
- •Нормальный эффект Зеемана
- •Аномальный эффект Зеемана
- •Электронные оболочки атома и их заполнение. Принцип Паули. Правила Хунда.
- •Количество электронов в каждой оболочке
- •Тормозное и характеристическое рентгеновское излучение. Закон Мозли.
- •Физические особенности в молекулярных спектрах. Энергия и спектр двухатомной молекулы. P-, q- и r-ветви.
- •Одномерный кристалл Кронига-Пенни. Понятие о зонной теории твердых тел. Фермионы и бозоны.
- •Расщепление энергетических уровней и образование зон. Различие между металлами, полупроводниками и диэлектриками в зонной теории.
- •Свойства и характеристика ядер. Нейтрон и протон, их свойства. Энергия связи ядра.
- •Свойства и модель ядерных сил. Капельная модель ядра. Формула Вейцзеккера для энергии связи. Оболочечная модель ядра.
- •Искусственная и естественная радиоактивность. Основной закон радиоактивного распада. Активность. Правила смещения.
- •Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
- •Основные закономерности -распада и его свойства. Нейтрино. Электронный захват. (см 27)
- •Получение трансурановых элементов. Основные закономерности реакций деления ядер.
- •Цепная реакция деления. Управляемая цепная реакция. Ядерный реактор.
- •Термоядерный синтез. Энергия звезд. Управляемый термоядерный синтез.
- •Источники и методы регистрации элементарных частиц. Типы взаимодействий и классы элементарных частиц. Античастицы.
- •Законы сохранения при превращениях элементарных частиц. Понятие о кварках.
- •Физическое, химическое и биологическое воздействие ионизирующего излучения.
- •Физические свойства ионизирующих излучений
- •Биологическое действие ионизирующих излучений
- •Дозы ионизирующих излучений и единицы их измерений. Радиационная безопасность.
- •Основные принципы обеспечения радиационной безопасности
- •Закономерности излучения черного тела. Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
Законы сохранения при превращениях элементарных частиц. Понятие о кварках.
Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдающаяся в свободном состоянии. Кварки являются точечными частицами вплоть до масштаба примерно 0,5·10−19 м, что примерно в 20 тысяч раз меньше размера протона. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.
Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него,Дж. Цвейгом в 1964 году.
Слово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для Мастера/Мюстера Марка!»). Само слово «quark» в этой фразе предположительно являетсязвукоподражанием крику морских птиц. Есть другая версия (выдвинутая Р. Якобсоном), согласно которой Джойс усвоил это слово из немецкого во время своего пребывания в Вене. В немецком слово Quark имеет два значения: 1) творог, 2) чепуха. В немецкий же данное слово попало из западнославянских языков (чеш. tvaroh,польск. twaróg — «творог»).[1]
Дж. Цвейг называл их тузами, но данное название не прижилось и забылось — возможно, потому, что тузов четыре, а кварков в первоначальной модели было три.
В силу неизвестных пока причин, кварки естественным образом группируются в три так называемыепоколения (они так и представлены в таблице). В каждом поколении один кварк обладает зарядом +2/3, а другой — −1/3. Подразделение на поколения распространяется также и на лептоны.
Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях. Сильные взаимодействия (обмен глюоном) могут изменять цвет кварка, но не меняют его аромат. Слабые взаимодействия, наоборот, не меняют цвет, но могут менять аромат. Необычные свойства сильного взаимодействия приводят к тому, что одиночный кварк не может удалиться на какое-либо заметное расстояние от других кварков, а значит, кварки не могут наблюдаться в свободном виде (явление, получившее названиеконфайнмент). Разлететься могут лишь «бесцветные» комбинации кварков — адроны.
Физическое, химическое и биологическое воздействие ионизирующего излучения.
Ионизи́рующее излуче́ние — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим, поскольку его энергии недостаточно для ионизации атомов и молекул в основном состоянии.