
- •Энергия и импульс фотона. Формула Планка для спектра излучения черного тела.
- •Квантовая теория фотоэффекта. Эффект Комптона.
- •Давление света. Опыты, подтверждающие давление света. Корпускулярно-волновой дуализм излучения.
- •Свойства волн де Бройля и их статистическая интерпретация. Опыты, подтверждающие волновые свойства микрочастиц.
- •Волновой пакет микрочастицы. Соотношение неопределенностей Гейзенберга.
- •Опыты Резерфорда по рассеянию -частиц. Формула Резерфорда. Модель атома Резерфорда-Бора.
- •З акономерности в спектрах атома водорода. Серии Лаймана, Бальмера, Пашена. Комбинационный принцип Ритца.
- •Дискретность квантовых состояний атома. Постулаты Бора. Опыты Франка-Герца.
- •Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Спектральная плотность излучения.
- •Волновая функция микрочастицы и ее свойства. Стационарное и нестационарное уравнение Шредингера.
- •Частица в одномерной бесконечно глубокой потенциальной яме: уравнение Шредингера, его решение, уровни энергии частицы.
- •Прохождение микрочастицы через потенциальный барьер. Туннельный эффект.
- •14. Туннельный эффект. Коэффициент прозрачности барьера
- •Гармонический осциллятор. Квантовомеханическое описание атома водорода.
- •Уровни энергии и схема термов щелочных металлов. Дублетная структура спектров щелочных металлов.
- •Магнитный и механический моменты электронов. Спин. Опыты Штерна и Герлаха.
- •Результирующий механический момент многоэлектронного атома. J-j и l-s связь.
- •Нормальный и аномальный эффекты Зеемана. Фактор Ланде.
- •Нормальный эффект Зеемана
- •Аномальный эффект Зеемана
- •Электронные оболочки атома и их заполнение. Принцип Паули. Правила Хунда.
- •Количество электронов в каждой оболочке
- •Тормозное и характеристическое рентгеновское излучение. Закон Мозли.
- •Физические особенности в молекулярных спектрах. Энергия и спектр двухатомной молекулы. P-, q- и r-ветви.
- •Одномерный кристалл Кронига-Пенни. Понятие о зонной теории твердых тел. Фермионы и бозоны.
- •Расщепление энергетических уровней и образование зон. Различие между металлами, полупроводниками и диэлектриками в зонной теории.
- •Свойства и характеристика ядер. Нейтрон и протон, их свойства. Энергия связи ядра.
- •Свойства и модель ядерных сил. Капельная модель ядра. Формула Вейцзеккера для энергии связи. Оболочечная модель ядра.
- •Искусственная и естественная радиоактивность. Основной закон радиоактивного распада. Активность. Правила смещения.
- •Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
- •Основные закономерности -распада и его свойства. Нейтрино. Электронный захват. (см 27)
- •Получение трансурановых элементов. Основные закономерности реакций деления ядер.
- •Цепная реакция деления. Управляемая цепная реакция. Ядерный реактор.
- •Термоядерный синтез. Энергия звезд. Управляемый термоядерный синтез.
- •Источники и методы регистрации элементарных частиц. Типы взаимодействий и классы элементарных частиц. Античастицы.
- •Законы сохранения при превращениях элементарных частиц. Понятие о кварках.
- •Физическое, химическое и биологическое воздействие ионизирующего излучения.
- •Физические свойства ионизирующих излучений
- •Биологическое действие ионизирующих излучений
- •Дозы ионизирующих излучений и единицы их измерений. Радиационная безопасность.
- •Основные принципы обеспечения радиационной безопасности
- •Закономерности излучения черного тела. Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
Основные закономерности -распада. Туннельный эффект. Свойства -излучения.
α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).
α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.
Правило смещения Содди для α-распада:
.
Пример:
.
В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.
Тунне́льный эффект — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.
Туннельный эффект можно объяснить соотношением неопределённостей.[1] Записанное в виде:
,
оно
показывает, что при ограничении квантовой
частицы по координате, то есть увеличении
её определённости по x,
её импульс p
становится менее определённым. Случайным
образом неопределённость импульса
может
добавить частице энергии для преодоления
барьера. Таким образом, с некоторой
вероятностью квантовая частица может
проникнуть через барьер, а средняя
энергия частицы останется неизменной.
Альфа-излучение обладает наименьшей проникающей способностью (чтобы поглощать альфа-частицы, достаточно листа плотной бумаги) в ткани человека на глубину менее миллиметра.
Основные закономерности -распада и его свойства. Нейтрино. Электронный захват. (см 27)
Беккерель доказал, что β-лучи являются потоком электронов. β-распад — это проявление слабого взаимодействия.
β-распад
(точнее, бета-минус-распад,
-распад) —
это радиоактивный распад, сопровождающийся
испусканием из ядра электрона и
антинейтрино.
β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:
Правило смещения Содди для -распада:
Пример:
После -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.
Существуют также другие типы бета-распада. В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и нейтрино. При этом заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева). Позитронный распад всегда сопровождается конкурирующим процессом — электронным захватом (когда ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу). Однако обратное неверно: многие нуклиды, для которых позитронный распад запрещён, испытывают электронный захват. Наиболее редким из известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для десяти нуклидов, и периоды полураспадов превышают 1019 лет. Все типы бета-распада сохраняют массовое число ядра.
Нейтри́но — нейтральная фундаментальная частица с полуцелым спином, участвующая только в слабом и гравитационном взаимодействиях, и относящаяся к классу лептонов.
Электро́нный захва́т, e-захват — один из видов бета-распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается в нейтрон, испуская электронное нейтрино. Заряд ядра при этом уменьшается на единицу. Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Этот процесс характерен для протонноизбыточных ядер. Если энергетическая разница между родительским и дочерним атомом (доступная энергия бета-распада) превышает 1,022 МэВ (удвоенную массу электрона), электронный захват всегда конкурирует с другим типом бета-распада, позитронным распадом. Например, рубидий-83 превращается в криптон-83 только посредством электронного захвата (доступная энергия около 0,9 МэВ), тогда как натрий-22 распадается в неон-22 посредством как электронного захвата, так и позитронного распада (доступная энергия около 2,8 МэВ).
Поскольку число протонов в ядре (т.е. заряд ядра) при электронном захвате уменьшается, этот процесс превращает ядро одного химического элемента в ядро другого элемента, расположенного ближе к началу таблицы Менделеева.
Общая формула электронного захвата
Примеры:
|
|
γ-излучение ядер и его свойства. Взаимодействие γ-излучения с веществом. Возникновение и уничтожение электрон-позитронных пар.
Экспериментально установлено, что -излучение не является самостоятельным видом радиоактивности, а только сопровождает - и -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. -Спектр является линейчатым. -Спектр — это распределение числа -квантов по энергиям. Дискретность -спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.
В настоящее время твердо установлено, что -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбужденным, за время примерно 10–13—10–14 с, значительно меньшее времени жизни возбужденного атома (примерно 10–8 с), переходит в основное состояние с испусканием -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому -излучение одного и того же радиоактивного изотопа может содержать несколько групп -квантов, отличающихся одна от другой своей энергией.
При -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. -Излучение большинства ядер является столь коротковолновым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому -излучение рассматривают как поток частиц — -квантов. При радиоактивных распадах различных ядер -кванты имеют энергии от 10 кэВ до 5 МэВ.
Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания -кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия — процесс, конкурирующий с -излучением.
Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде -кванта, то частота излучения определяется из известного соотношения E=h. Если же испускаются электроны внутренней конверсии, то их энергии равны Е—АK, E—AL, .... где AK, AL, ... —работа выхода электрона из К- и L-оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от -электронов, спектр которых непрерывен. Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электронами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.
-Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении -излучения сквозь вещество они либо поглощаются, либо рассеиваются им. -Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка -квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом I =I0e–x (I0 и I — интенсивности -излучения на входе и выходе слоя поглощающего вещества толщиной х, — коэффициент поглощения). Так как -излучение — самое проникающее излучение, то для многих веществ — очень малая величина; зависит от свойств вещества и от энергии -квантов.
-Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение -излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.
Фотоэффект, или фотоэлектрическое поглощение -излучения, — это процесс, при котором атом поглощает -квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий -квантов (E 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить -квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.
По мере увеличения энергии -квантов (E 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия -квантов с веществом является комптоновское рассеяние.
При E>l,02 МэВ=2meс2 (тe—масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z2 и увеличивается с ростом E . Поэтому при E10 МэВ основным процессом взаимодействия -излучения в любом веществе является образованно электронно-позитронных пар.
Если энергия -кванта превышает энергию связи нуклонов в ядре (7—8 МэВ), то в результате поглощения -кванта может наблюдаться ядерный фотоэффект— выброс из ядра одного из нуклонов, чаще всего нейтрона.
Большая проникающая способность -излучения используется в гамма-дефектоскопии — методе дефектоскопии, основанном на различном поглощении -излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.
Воздействие -излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:
Поглощенная доза излучения — физическая величина, равная отношению энергии излучения к массе облучаемого вещества.
Единица поглощенной дозы излучения — грей (Гр)*: 1 Гр= 1 Дж/кг — доза излучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.