Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по аналоговым измерительным устройствам (АИУ).doc
Скачиваний:
97
Добавлен:
02.05.2014
Размер:
3.3 Mб
Скачать

Электронные вольтметры постоянного тока

Эти приборы используются главным образом для измерения малых напряжений. Их наибольший предел измерения 1÷10 мВ, внутреннее сопротивление порядка 1÷10 мОм.

Входное напряжение поступает на трехзвенный Г-образный ЧС-фильтр, назначение которого уменьшить наводки промышленной частоты - 50 Гц во входном сигнале.

Затем напряжение модулируется, усиливается усилителем Y1, состоящим из Y' (1 и 2-ой каскада) и Y" (3 - 5-ой каскады), затем демодулируется, подается на согласующий усилитель Y2, который выполнен по схеме катодного повторителя и служит для согласования сопротивления μА с сопротивлением Y2. Напряжение измеряется μА (100 μА), шкала которого градируется в единицах напряжения.

В качестве модулятора использован вибропреобразователь. ДМ - диодный кольцевой демодулятор.

Цепь обратной связи служит для стабилизации коэффициента усиления и его изменения при переключении пределов измерения.

В переключатель пределов измерения, кроме звена ОС входит делитель напряжения ДН, расположенный между вторым и третьим каскадом Y1.

ГНЧ - генератор несущей частоты обеспечивает подачу напряжения на М и ДМ.

По такой схеме построен вольтметр постоянного тока типа В2-11 с пределами измерения В, внутреннее сопротивление 10÷300 мОм и погрешность 6÷1 %.

Универсальные вольтметры

Универсальные вольтметры строятся по схеме, которая называется схемой "выпрямитель-усилитель". Важной частью схемы яв-ляется выпрямитель "В". Как правило, в универсальных вольтметрах используются В амплитудного значения, построенные по схеме однополупериодного выпрямления (так как в случае двухполупериодного выпрямления невозможно создать заземленную шину) с открытым или закрытым входом, но, как правило, используется схема с закрытым входом, что объясняется независимостью напряжения на ее выходе от постоянной составляющей на входе.

Универсальные вольтметры имеют широкий частотный диапазон, но сравнительно низкую чувствительность и точность.

Получили распространение универсальные вольтметры В7-17, В7-26, ВК7-9 и другие. Их основная погрешность достигает ±4%. Частотный диапазон до 103 мГц. Пределы измерения от 100÷300 мВ до 103 В.

Вольтметры переменного тока

ППИ – переключатель пределов измерения.

Электронные вольтметры переменного тока предназначаются в основном для измерения малых напряжений. Это объясняется их структурой "усилитель-выпрямитель", то есть предварительным усилением напряжения. Эти приборы обладают высоким входным сопротивлением за счет введения схем с глубокими местными обратными связями, в том числе катодных и эмиттерных повторителей: в качестве ВП используются выпрямители среднего, амплитудного и действующего значения. Шкала, как правило, градуируется в единицах действующего значения с учетом соотношений идля синусоидальных напряжений. Если шкала градуируется вUср или Uт , то на ней имеются соответствующие обозначения .

В общем приборы по схеме "усилитель-выпрямитель" имеют большую чувствительность и точность, но частотный диапазон их сужен, он ограничивается усилителем У.

Если используется В среднего или амплитудного значения, то приборы критичны к форме кривой входного напряжения при градуировке шкалы в ед. Uд.

При использовании В среднего значения, он, как правило, выполняется по двухполупериодной схеме выпрямления. При использовании амплитудного детектора - по схеме с открытым или закрытым входами.

Особенностью электронных вольтметров действующего значения является квадратичность шкалы за счет наличия квадратирующего устройства в В. Существуют специальные методы устранения этого недостатка.

Получили распространение милливольтметры переменного тока типа В3-14, В3-88, В3-2 и т.п.

Среди электронных вольтметров наибольшую точность имеет диодный компенсационный вольтметр (ДКВ). Его погрешность не превышает сотых долей процента. Принцип действия поясняет следующей схемой.

Д - диод

НИ - нуль-индикатор

При подаче и компенсационного напряжения смещенияпоследнее можно отрегулировать так, что НИ покажет 0. Тогда можно считать, что.

Импульсные вольтметры

Импульсные V предназначены для измерения амплитуд периодических импульсов сигналов с большой скважностью и амплитуд одиночных импульсов.

Трудность измерения состоит в многообразии форм импульсов и широком диапазоне изменения временных характеристик.

Все это не всегда известно оператору.

Измерение одиноч-ных импульсов создает дополнительные трудности, так как не удается накопить информацию об измеряемой величине многократным воздействием сигнала.

Импульсные V строятся по приведенной схеме. Здесь ПАИ - преобразователь амплитуды и импульса в напряжение. Это самый важный блок. Он в ряде случаев обеспечивает не только указанное преобразование и запоминание преобразованного значения в течение времени отсчета.

Наиболее часто в ПАИ используются диодно-конденсаторные пиковые детекторы. Особенность этих детекторов в том, что длительность импульсов τU может быть мала, а скважность - велика. В результате за τU "С" полностью не зарядится, а за "Т" - значительно разрядится.

Чтобы

должно быть очень мало, следовательно емкость – должна быть мала.

; т.е. и емкость должна быть велика. То есть возникают противоречивые требования к емкости.должно быть велико, а- мало, нозависит от внутреннего сопротивления источникаUвх(t). Для решения подобных противоречий используются специальные схемы:

  1. При преобразовании амплитуды импульсов с большой скважностью или одиночных импульсов используются многоступенчатые преобразователи, состоящие из нескольких последовательно включенных преобразователей диодно-конденсаторного типа. Время запоминания многоступенчатого преобразователя определяется конденсатора последнего преобразователя, а минимальная длительность измеряемого импульса -первого преобразователя.

  2. Пользуются двухканальным методом преобразования. Здесь на дифференциальный УПТ подаются напряжения с выхода двух пиковых детекторов, из которых один преобразует амплитуду измеряемого импульса, а второй n-ю часть амплитуды.

  3. Для преобразования амплитуды периодически повторяющихся импульсов в наносекундном диапазоне пользуются компенсационным методом.

  4. При измерении малых амплитуд импульсов применяется дифференциально-интегральный метод преобразования амплитуды импульсов.

Uвх(t) – дифференцируется, ДЦ подается на генератор тока, ГТ затем интегрируется. Интегратор разряжается через разрядное устройство.

В результате .

Все эти методы решают две задачи: ускорение заряда накопительного конденсатора и замедление его разряда.