
- •Физика Экзамен 2 семестр:
- •Прямолинейной движение тела(равномерное и не равномерное). Кинематическое уравнение движения, перемещение, скорость и ускорение прямолинейного движения.
- •Криволинейное движение тела(равномерное и не равномерное).Кинематическое уравнение движения, перемещение, скорость и ускорение.
- •Вращательное движение. Угловая скорость, ускорение, кинематическое уравнение вращательного движения.
- •5. Свободное падение тела под углом к горизонту.
- •Основные понятия динамики поступательного движения: Масса, импульс, сила. Законы Ньютона для поступательного движения тела.
- •7. Закон сохранения импульса и закон движения центра масс для механической системы.
- •Движения тела переменной массы. Уравнение Мешерского, формула Циалковского.
- •Вращательное движение. Момент силы. Момент импульса. Момент инерции мех. Системы.
- •Твердое тело. Момент импульса и момент инерции твердого тела. Теорема Штейнера.
- •Основной закон динамики вращательного движения. Закон сохранения момента импульса мех. Системы.
- •Энергия, как общая мера форм движения материи. Закон сохр. Энергии. Мех. Энергия. Работа и мощность. Кинетическая и потенциальные энергии.
- •Консервативные силы. Полная мех. Энергия системы. Закон сохр. Мех. Энергии.
- •Работа. Мощность. Кинетическая энергия вращательного движения тв. Тела. Теорема Кёнига.
- •15. Понятие электрического заряда. Закон Кулона в вакууме.
- •16. Напряженность электрического поля. Электрические силовые линии. Принцип суперпозиции.
- •17.Поток напряженности эл. Поля. Теорема Гаусса эл. Поля в вакууме.
- •18. Применение теоремы Гаусса для расчета эл. Полей равномерно заряженных сферы, бесконечной нити и плоскости.
- •19. Проводники в электрическом поле. Электрическое поле внутри и снаружи проводника. Распределение электрических зарядов в проводнике.
- •2 0. Работа электрического поля.
- •25. Электроемкость. Конденсаторы
- •26. Диэлектрики в электрическом поле. Векторы поляризации и электрической индукции. Диэлектрическая проницаемость.
- •29. Зависимость сопротивления от температуры. Соединение сопротивлений.
- •30. Законы Ома и Джоуля-Ленца в интегральной и дифференциальной формах.
- •31. Источник постоянного тока. Электродвижущая сила. Закон Ома для полной электрической цепи.
- •32. Правила Кирхгофа для разветвлённой электрической цепи. Расчёт сложных электрических цепей.
- •33. Возникновение магнитного поля. Индукция магнитного поля. Магнитные силовые линии и магнитный поток.
- •34. Теорема Гаусса для магнитного поля в. Принцип суперпозиции.
- •35. Сила Лоренца
- •36. Закон Био-Савара, расчет магнит.Поля на оси кругового витка с током и магнит.Поля прямолинейного проводника
- •37.Закон полного тока для магнитного поля в вакууме.
- •39. Работа магнитных сил. Действие магнитного поля на контур с током. Магнитный момент.
- •40. Магнитное поле в веществе. Магнитная проницаемость. Закон полного тока для магнетиков.
- •41. Явление эми. Закон Фарадея. Правило Ленса.
- •42. Явление самоиндукции. Индуктивность. Направление индукционного тока. Индуктивность длинного соленоида.
- •43.Явление взаимной индукции. Взаимная индукция. Энергия и объемная плотность энергии магнитного поля.
- •44. Система уравнений Максвела в интегральной и дифференциальной формах. Природа электромагнитного поля.
32. Правила Кирхгофа для разветвлённой электрической цепи. Расчёт сложных электрических цепей.
Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей.
В разветвленных цепях можно выделить узловые точки (узлы), в которых сходятся не менее трех проводников. Токи, втекающие в узел, принято считать положительными; вытекающие из узла – отрицательными.
В
узлах цепи постоянного тока не может
происходить накопление зарядов. Отсюда
следует первое
правило Кирхгофа:
Алгебраическая сумма сил токов для
каждого узла в разветвленной цепи равна
нулю:
Первое правило Кирхгофа является следствием закона сохранения электрического заряда.
В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами. На разных участках выделенного контура могут протекать различные токи.
Второе правило Кирхгофа является следствием обобщенного закона Ома.
Второе
правило Кирхгофа
можно сформулировать так: алгебраическая
сумма ЭДС в замкнутом контуре равна
алгебраической сумме произведений сил
токов и сопротивлений каждого из участков
этого контура.
Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи.
Таким образом, правила Кирхгофа сводят расчет разветвленной электрической цепи к решению системы линейных алгебраических уравнений. Это решение не вызывает принципиальных затруднений, однако, бывает весьма громоздким даже в случае достаточно простых цепей. Если в результате решения сила тока на каком-то участке оказывается отрицательной, то это означает, что ток на этом участке идет в направлении, противоположном выбранному положительному направлению.
33. Возникновение магнитного поля. Индукция магнитного поля. Магнитные силовые линии и магнитный поток.
Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения. Магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозон-фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля). В СИ магнитная индукция измеряется в теслах (Тл).
Магни́тная инду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Показывает, с какой силой магнитное поле действует на заряд , движущийся со скоростью.
Более
точно, В— это такой вектор, что сила
Лоренца , действующая на заряд , движущийся
со скоростью , равна
где
α — угол между векторами скорости и
магнитной индукции.
МАГНИТНЫЕ СИЛОВЫЕ ЛИНИИ - это воображаемые линии, по направлению которых действуют магнитные силы в магнитном поле. Это линии, которые находятся вокруг проводника с током, они круговые, то есть не имеют ни начала ни конца, в отличие от линий напряженности электростатического поля.
Магнитный поток
Поток вектора индукции магнитного поля через какую-то поверхность площадью S равняется количеству линий индукции, которые пронизывают эту поверхность. Густота линий индукции, S и ориентации поверхности в магнитном поле. (вебер).