Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия.docx
Скачиваний:
20
Добавлен:
27.09.2019
Размер:
136.82 Кб
Скачать

3. Роль почек

Как описано выше, образовавшиеся в результате метаболизма кислоты сразу же попадают под контроль различных буферных систем. Это препятствует резким сдвигам рН внутренней среды организма. Образующийся углекислый газ выделяется через лёгкие при дыхании, а нелетучие кислоты могут экскретироваться только почками.

Поддержание буферной ёмкости организма и восстановление различных буферных систем происходит за счёт восстановления уровня сывороточного бикарбоната. Этот процесс осуществляется в почках.

На первом этапе образования мочи (клубочковая фильтрация) образуется ультрафильтрат плазмы, представляющий собой первичную мочу, по составу аналогичную плазме. В первичной моче содержится значительное количество бикарбоната, который организму необходимо сохранить. Поэтому, когда уровень бикарбоната в плазме падает ниже физиологических показателей, в проксимальных канальцах почек при участии фермента карбоангидразы начинается процесс реабсорбции профильтрованных в клубочках бикарбонатных ионов.

Рис.3. Процесс сохранения ионов бикарбоната в почках.

Но одного сохранения бикарбоната недостаточно, так как большое его количество расходуется на восстановление других буферов организма и теряется при дыхании в виде углекислого газа. Количество бикарбоната в организме необходимо постоянно восполнять. Этот процесс осуществляется в дистальных канальцах при участии карбоангидразы. При этом в мочу секретируются ионы водорода, которые связываются с фосфатами или аммонием в канальцевом фильтрате, а бикарбонатные ионы возвращаются в кровь. Происходит секреция нелетучих кислот и восстановление бикарбоната.

В результате процессов, описанных выше, предотвращаются потери бикарбоната с мочой, и образуется дополнительное количество ионов бикарбоната, которое соответствует эндогенной продукции катионов водорода. При нормальных условиях происходит восстановление физиологического уровня бикарбоната в крови (24 - 27 ммоль/л).

Заключение

В результате различных метаболических процессов в нашем организме постоянно образуются различные кислоты. Они сразу же нейтрализуются буферными системами, среди которых наиболее важной является бикарбонатная. Для поддержания постоянного уровня рН внутренней среды организма расходуется бикарбонат, что требует его постоянной регенерации. В норме этот процесс происходит в почках. У больных с почечной недостаточностью функцию почек замещает диализ, а буферная ёмкость крови восстанавливается посредством включения в состав диализирующего раствора различных буферных источников, наиболее физиологичным из которых является бикарбонат. Из-за недостаточной коррещии кислотно-основного состояния во время сеанса гемодиализа многие диализные больные постоянно находятся под воздействием метаболического ацидоза.

Обмен веществ в организме.

Обмен веществ (метаболизм) определяется как характерный признак жизни. В результате обмена веществ непрерывно образуются, обновляются и разрушаются клеточные структуры, синтезируются и разрушаются различные химические соединения. В организме динамически уравновешены процессы анаболизма (ассимиляции) – биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) – расщепления сложных молекул компонентов клеток.

Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболических процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела. При этом происходит превращение энергии, переход потенциальной энергии химических соединений, освобождаемой при их расщеплении, в кинетическую, в основном тепловую и механическую, частично в электрическую энергию.

Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступление из внешней среды белковлипидовуглеводоввитаминов,минеральных солей и воды. Их количество, свойства и соотношение должны соответствовать состоянию организма и условиям его существования. Это достигается путем питания. Необходимо также, чтобы организм очищался от конечных продуктов распада, которые образуются при расщеплении различных веществ. Это достигается работой органов выделения.

Две стороны обмена веществ: ассимиляция и диссимиляция.

В обмене веществ принято выделять ассимиляцию и диссимиляцию.

Ассимиляция заключается в усвоении веществ окружающей среды и превращении их в вещества организма.

Под диссимиляцией понимается, распад веществ организма на конечные продукты и устранения их из организма.

Различные этапы ассимиляции и диссимиляции могут быть представлены одними и теми же химическими реакциями. Так, гидролитическое расщепление белков на аминокислоты происходит как в процессе ассимиляции ( при пищеварении в желудочно-кишечном тракте), так и в процессе диссимиляции ( при разрушении тканевых белков организма).

В обмене веществ принято выделять: пластический, функциональный обмен, обмен с внешней средой и промежуточный обмен.

Под пластическим обменом понимают химических реакций, приводящих к синтезу специфических для организма веществ: структурных веществ, ферментов, гормонов, различных секретов, запасных источников энергии.

Функциональный обмен- это комплекс реакций, обеспечивающих функциональную энергию клетки, органа, ткани (например, реакции, оcccc c c беспечивающие мышечное сокращение, работу сердца, легкого, печени, почек). Функциональный обмен связан в основном с процессами преобразования энергии.

Роль ферментов в обмене вещест.

Ферментами называются специфические белки, которые содержатся во всех тканях и клетках живого организма. Ферменты играют роль биологических катализаторов, т. е. веществ, обладающих способностью резко ускорять те или иные химические реакции, и обусловливают необходимые для жизнедеятельности организма превращения веществ.

Известно, что белки, жиры, углеводы, содержащиеся во многих продуктах питания, довольно устойчивы к кислороду. Такие продукты, как сахар, крупа, мука, крахмал и др., могут храниться долго, не подвергаясь изменениям.

Для того чтобы вне организма добиться расщепления белков, жиров и углеводов на простейшие соединения, их приходится подвергать длительному кипячению с концентрированными растворами минеральных кислот или щелочей. Тогда белки распадаются на аминокислоты, жиры — на глицерин и высшие жирные кислоты, полисахариды — на простые сахара.

Эти же процессы расщепления происходят в пищеварительном тракте человека при температуре тела 37° и при умеренно кислой реакции в желудке и слабо щелочной реакции в кишечнике. Свойство пищеварительных соков расщеплять основные вещества, содержащиеся в пище, связано с наличием в них различных ферментов(пепсина, трипсина, липазы, амилазы и др.), которые и обеспечивают достаточно быстрый ход реакции. Попав в человеческий организм, белки, жиры, углеводы подвергаются различным изменениям, а затем после всасывания и усвоения окисляются с образованием воды и углекислого газа, т. е. медленно «сгорают» в организме. Таким образом, не только процесс пищеварения, но и усвоение питательных веществ клетками тела, поглощение кислорода тканями и образование углекислоты, освобождение энергии и многие другие химические процессы в клетках и тканях протекают при участии ферментов.