Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matanal_1 (1).docx
Скачиваний:
2
Добавлен:
27.09.2019
Размер:
120.32 Кб
Скачать

Касательная плоскость и нормаль к поверхности

 Определение 1. Касательной плоскостью к поверхности   в данной точке P (x0, y0, z0) называется плоскость, проходящая через точку Р и содержащая в себе все касательные, построенные в точке Р ко всевозможным кривым на этой поверхности, проходящим через точку Р.Пусть поверхность s задана уравнением F (хуz) = 0 и точка  P (x0, y0, z0) принадлежит этой поверхности. Выберем на поверхности какую-либо кривую L, проходящую через точку Р.Пусть х = х(t), у = у(t), z = z(t) –  параметрические уравнения линии L.Предположим, что: 1) функция F(хуz) дифференцируема в точке Р и не все её частные производные в этой точке равны нулю; 2) функции  х(t), у(t), z(t) также дифференцируемы.Поскольку кривая принадлежит поверхности s , то координаты любой точки этой кривой, будучи подставленными в уравнение поверхности, обратят его в тождество. Таким образом, справедливо тождественное равенство: F [x(t), у(t), z (t)] = 0.Продифференцировав это тождество по переменной t, используя цепное правило, получим новое тождественное равенство, справедливое во всех точках кривой, в том числе и в точке P (x0, y0, z0):

.

Пусть точке Р соответствует значение параметра t0, то есть x0 = x (t0), y0 = y (t0),    z0 = z (t0). Тогда последнее соотношение, вычисленное в точке Р, примет вид

.                  (17)

Формула (17) представляет собой скалярное произведение двух векторов. Первый из них – постоянный вектор

,

не зависящий от выбора кривой на поверхности   .

Второй вектор  –  касательный в точке Р к линии L, а значит, зависящий от выбора линии на поверхности, то есть является переменным вектором.

При введённых обозначениях равенство (17) перепишем как  . Его смысл таков: скалярное произведение равно нулю, следовательно, векторы   и   перпендикулярны. Выбирая всевозможные кривые (см. рис. 54), проходящие через точку Р на поверхности s , мы будем иметь различные касательные векторы, построенные в точке Р к этим линиям; вектор же   от этого выбора не зависит и будет перпендикулярен любому из них, то есть все касательные векторы

расположены в одной плоскости, которая, по определению, является касательной к поверхности s , а точка Р в этом случае называется точкой касания. Вектор   является направляющим вектором нормали к поверхности.

Определение 2. Нормалью к поверхности s в точке Р называется прямая, проходящая через точку Р и перпендикулярная к касательной плоскости, построенной в этой точке.

Мы доказали существование касательной плоскости, а, следовательно, и нормали к поверхности. Запишем их уравнения:

;         (18)

(18) – уравнение касательной плоскости, построенной в точке P (x0, y0, z0) к поверхности s , заданной уравнением F(хуz) = 0;

;              (19)

  1. – уравнение нормали, построенной в точке Р к поверхности s .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]