Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2-35.docx
Скачиваний:
3
Добавлен:
27.09.2019
Размер:
373.82 Кб
Скачать

2.

Кулон-это заряд, проходящий за 1 С.через поперечное сечение проводника при силе тока 1А.

Закон Кулона : силы взаимодействия двух неподвижных точечных заряженных тел пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой ,соединяющей эти тела:

- диэлектрическая проницаемость среды. для вакуума и воздуха = 1.

Где 0-электрическая постоянная:

Принцип суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Связь между напряжением и напряженностью:

3.

Электрическое поле- особый вид материи, посредством который осуществляет взаимодействие заряженных тел.

Порождается электрическими зарядами и обнаруживается по действию на них с некоторой силой.

Электрическое поле, откужеющее заряженное тело, можно исследовать с помощью так называемогопробного заряда- небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Сила Лоренца описывает воздействие электромагнитного поля на частицу.

Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

4.

Напряжённость электрического поля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда : Сила — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе.

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря – разное в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон.

5.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

- энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

- следствие принци­па суперпозиции полей (потенциалы складываются алгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Напряжение — разность значений потенциала в начальной и конечной точках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора системы координат!

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

6.

Электростатическое поле - эл. поле неподвижного заряда. Fэл , действующая на заряд, перемещает его, совершая раборту. В однородном электрическом поле Fэл = qE - постоянная величина

Электростатическая энергия - потенциальная энергия системы заряженных тел (т.к. они взаимодействуют и способны совершить работу).

Так как работа поля не зависит от формы траектории, то одновременно

сравнивая формулы работы, получим потенциальную энергию заряда в однородном электростатическом поле

Если поле совершает положительную работу ( вдоль силовых линий ), то потенциальная энергия заряженного тела уменьшается (но согласно закону сохранения энергии увеличивается кинетическая энергия ) и наоборот.-энергитическая характеристика эл. поля. - равен отношению потенциальной энергии заряда в поле к этому заряду. - скалярная величина, определяющая потенциальную энергию заряда в любой точке эл. поля.

7.

Þ

 напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

1. Вектор напряженности направлен в сторону уменьшения потенциала.

2. Электрическое поле существует, если существует разность потенциалов.

3. Единица напряженности: - Напряженность поля равна

1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

 

8.

      Электроемкость — скалярная, физическая величина характеризующая способность проводника или системы проводников накапливать электрический заряд. За величину электроемкости система проводников принимают отношение модуля заряда одного из проводников к разности потенциалов между этим проводником и соседним.

  Электрической ёмкостью проводника называется отношение заряда проводника к его потенциалу.

     При этом потенциал отсчитывается от потенциала бесконечности, который принимается равным нулю.

      Проводник называют уединённым, если он находится далеко от других тел, то есть его размеры много меньше расстояний до других тел. Электроёмкость уединённого проводника не зависит от его заряда. Электроёмкость любого проводника не зависит от материала. Она зависит только от формы и размеров проводника. Хотя электроёмкость и определяется через заряд и потенциал, она не зависит ни от заряда, ни от потенциала. Эта величина постоянна для данного уединённого проводника. Практическая польза электроёмкости состоит в том, что, определив её экспериментально или теоритически, можно при известном заряде проводника вычислить его потенциал и наоборот.

      В действительности проводник никогда не является абсолютно уединённым. Окружающие заряженные тела создают собственные электрические поля, а у незаряженных они возникают в поле проводника (поляризация диэлектриков, проводники в электрическом поле). Поэтому электроёмкость зависит от окружающих тел. Во многих случаях проводник всё же можно считать уединённым.

      Эти формулы и определение электроёмкости позволяют определить её единицу измерения. В СГСЭ единица электроёмкости совпадает с единицей длины - сантиметр. В СИ единица электроёмкости - фарад (Ф). 1Ф=Кл/В. Ёмкостью в один фарад обладает проводник, потенциал которого увеличивается на один вольт при сообщении заряда один кулон.

      Фарад - очень большая единица измерения, поэтому, как правило, исползуются производные единицы: микрофарад, 1 мкФ=10-6Ф, и пикофарад, 1 пФ=10-12Ф. Ёмкость земного шара меньше одной тысячной фарада, она равна 709 мкФ. Ёмкостью в один фарад обладал бы шар с радиусом в 13 раз большим радиуса Солнца.

Формула электроёмкости в СИ позволяет получить ещё одну (кроме Кл2/Н*м2) единицу измерения электрической постоянной ε0 - Ф/м (фарад на метр).

9.

Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

   где — мнимая единица, — частота протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).   При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .   Резонансная частота конденсатора равна При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.      Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:    где — напряжение (разность потенциалов), до которого заряжен конденсатор.

10.

Когда емкость одного конденсатора мала, то соединяют несколько конденса­торов параллельно. При параллельном соединении конденсаторов напряжение между пластинами каждого конденсатора одно и то же. Поэтому можно написать

Заряд каждого конденсатора:

Общий заряд батареи конденсаторов:

Обозначая емкость батареи конденсаторов через С, получаем

тогда

или окончательно

Следовательно, при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов. При параллельном соединении каждый конденсатор окажется включенным на полное напряжение сети, поэтому параллельно соединять можно только те конденсаторы, у которых рабочее напря­жение больше или равно напряжению сети.

Рассмотрим последовательное соединение конденсаторов (рис 114).

Если левая пластина первого конденсатора заряжена положи­тельно (+), то вследствие электростатической индукции правая пластина этого конденсатора получит отрицательный заряд (—),

перешедший с левой пластины вто­рого конденсатора, которая сама зарядится положительно, и т. д. Значит при последовательном со­единении каждый конденсатор не­зависимо от величины его ем­кости получит один и тот же за­ряд, т. е.

Напряжение, приложенное ко всей батарее конденсаторов, равно сумме напряжений на пластинах каждого конденсатора:

Так как

для всей батареи  

Теперь можно написать

или, сокращая на д, получим окончательно

Таким образом, при последовательном соединении конденсато­ров обратная величина общей емкости равна сумме обратных вели­чин емкостей отдельных конденсаторов. Каждый из конденсаторов включен на меньшее напряжение, чем напряжение сети, что позво­ляет при последовательном соединении конденсаторов их рабочее напряжение выбирать меньшим, чем напряжение сети.

Конденсаторы широко применяются в радиотехнике и промыш­ленной электротехнике.

11.

Работа электрического поля по перемещению заряда из точки A в точку B пропорциональна напряжению между этими точками:

 A = Uq. 

Так как электростатическое поле – поле консервативных сил, то его работа не зависит от пути, по которому перемещается заряд. Работа электростатического поля по замкнутой траектории равняется нулю.

Заряженные тела, помещенные в электрическое поле, обладают потенциальной энергией.

Работа электрического поля при перемещении заряженного тела равна убыли потенциальной энергии тела:

 A = –ΔW. 

Потенциальная энергия точечного заряда в электростатическом поле равна произведению потенциала поля в данной точке на величину заряда:

 W = φq. 

Как и потенциал, потенциальная энергия определена с точностью до константы.

Практический интерес представляют системы из двух проводников, разделенных диэлектриком. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Электроемкость конденсатора равна

   

где q – заряд положительной обкладки, U – напряжение между обкладками. Электроемкость конденсатора зависит от его геометрической конструкции и электрической проницаемости заполняющего его диэлектрика и не зависит от заряда обкладок. В СИ электроемкость измеряется в фарадах.

Рисунок 3.2.1.

Поле плоского конденсатора. При решении простых задач можно принебречь краевым эффектом, то есть электрическим полем у краев пластин.

Электроемкость плоского конденсатора равна

   

где S – площадь каждой из обкладок, d – расстояние между ними, ε – диэлектрическая проницаемость вещества между обкладками. При этом предполагается, что геометрические размеры пластин велики по сравнению с расстоянием между ними.

 

Электроемкость C батареи, составленной из параллельно соединенных конденсаторов C1 и C2, рассчитывается по формуле

   

а батареи, составленной из последовательно соединенных конденсаторов, по формуле

   

Рисунок 3.2.2.

Параллельное соединение конденсаторов.

Рисунок 3.2.3.

Последовательное соединение конденсаторов.

Энергия электрического поля внутри конденсатора равняется

   

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е. Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q: Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид

12.

Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии.

1. Под электрическим током понимается любое упорядоченное движение электрических зарядов, происходящее под действием электрического поля. Обычно движение зарядов происходит в некоторой среде, которая при этом называется проводником, а сами заряды называются носителями тока. В случае металлов носителями тока являются свободные электроны, а в электролитах и ионизованных газах —положительные и отрицательные ионы, а также электроны. 2. Электрический ток характеризуется объемной плотностью тока j→. Для ее определения рассмотрим количество зарядов, переносимых носителями через элементарную площадку dS за единицу времени. Для простоты вначале предположим, что носителями тока являются заряженные частицы одного сорта. Пусть в окрестности точки r→ концентрация носителей N1∕см3, а распределение по скоростям характеризуется функцией распределения f(v→). При этом частицы, обладающие скоростью v→ и разбросом скорости dv→, за время dt через площадку dS переносят заряд qNf(v→)(v→ ⋅n→)dSdv→dt где q —заряд носителя тока, n→ —единичная нормаль к площадке, а суммарный заряд, переносимый всеми частицами за единицу времени, т. е. ток через площадку dS, будет равен

dI = qN ∫ v→f(v→)dv→ ⋅n→dS. Эту величину можно представить в виде

dI = (j→ ⋅n→)dS = jndS,

(20.1)

где вектор j→, связанный с вектором средней скорости зарядов u→ = ∫ v→f(v→) = N−1 ∑ i=1Nv→ i

соотношением

j→ = q ∑ i=1Nv→ i = qNu→,

(20.2)

и есть рассматриваемая объемная плотность тока. Из (1) видно, что объемная плотность тока по величине равна току, протекающему через единичную площадку, перпендикулярную вектору j→, а размерность j связана с размерностью q соотношением [j] = [q]см−2с−1(в абсолютной системе).

Если в создании тока участвуют несколько типов заряженных частиц, то учитывается вклад каждого сорта и тогда j→ = ∑ iqiNiu→i.

Если рассматривается некоторый конечный объем V , ограниченный замкнутой поверхностью S, то суммарный заряд, выносимый из объема V через границу за единицу времени, равен

I = ∮ SjndS(полный ток через поверхность S);

здесь n→ - внешняя нормаль к поверхности S.

3. Наряду с объемно распределенными токами, характеризующимися объемной плотностью j→, часто встречаются ситуации, когда ток можно считать поверхностным и характеризовать поверхностной плотностью i → . Ток, бегущий по слою малой (по сравнению с другими размерами) толщины δ можно считать поверхностным, если интересоваться только внешними проявлениями этого тока в пространстве вне слоя на расстояниях, существенно превышающих толщину слоя (например, магнитным полем от этого тока). При этом истинным распределением плотности тока j→ по толщине слоя можно не интересоваться, толщину слоя не принимать во внимание и рассматривать слой в виде математической поверхности, по которой бежит ток с поверхностной плотностью i → . Вектор i → в каждой точке поверхности лежит в касательной плоскости и равен произведению усредненной по толщине слоя объемной плотности тока ⟨j→⟩ и толщины слоя δ, т. е.

i→ = ⟨j→⟩δ.

(20.4)

Если теперь на поверхности взять произвольный отрезок Δℓ и провести к нему нормаль n→, лежащий в касательной плоскости, то ток, протекающий через этот отрезок,

ΔI = (i→ ⋅n→)Δℓ = inΔℓ

фактически будет совпадать с током, протекающим через элементарное сечение ΔS = Δℓδ реального токового слоя под отрезком Δℓ, т. к. на основании (3.4) inΔℓ = ⟨jn⟩δΔℓ = ⟨jn⟩ΔS.

Задача 3.1. Равномерно заряженный с объемной плотностью ρ диэлектрический цилиндр радиуса R и высотой h вращается с угловой скоростью ω относительно оси симметрии. Найти распределение объемной плотности тока j→ в пределах цилиндра.

В цилиндрической системе координат (r,α,z), привязанной к рассматриваемому цилиндру, искомая плотность тока

j→ = jαe→α

по условию задачи не имеет составляющих jr и jz. Для определения jα рассмотрим элементарную площадку drdz, перпендикулярную орту e→α (рис. 44) и заметим, что ток через эту площадку равен dI = ρωrdrdz. На основании отсюда имеем jα = ρωr и, следовательно,

j→ = ρωre→αв областиr ≤ R,∣z∣≤ h∕2.

Следует обратить внимание, что хотя цилиндр заряжен вплоть до внешней поверхности, поверхностные токи здесь не возникают.

Задача 3.2. Предположим, что цилиндр дополнительно заряжен по поверхности. Пусть ∑ h = const, ∑ R = const — поверхностные плотности зарядов на торцах и на цилиндрической поверхности. Найти поверхностные токи.

Для определения поверхностной плотности на торцах цилиндра рассмотрим радиальный отрезок dr, лежащий на торце и заметим, что через этот отрезок за 1 с переносится заряд, равный заряду кольцевой полости длины v = ωr (на рис. 44 заштрихована). Следовательно, ток через отрезок dI = ∑ hωrdr и в соответствии с (3.5) iα = ∑ hωr (на торцах ∣z∣ = h∕2). Аналогично из рассмотрения отрезка dz, расположенного вдоль образующей цилиндра, находим iα = ∑ RωR на поверхности цилиндра.

13.

Электрический ток - это направленное движение электрических зарядов в веществе или вакууме под воздействием электрического поля. Ток характеризуется силой, измеряемой в амперах (А). Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

1А = 1Кл / с.

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий: -наличие в среде свободных электрических зарядов -создание в среде электрического поля. В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника, Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока. Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

14.

Силой тока называется физическая величина , равная отношению количества заряда , прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в системе СИ измеряется в Амперах.

По закону Ома сила тока для участка цепи прямо пропорциональна приложенному напряжению к участку цепи и обратно пропорциональна сопротивлению проводника этого участка цепи :

— где e — заряд электрона, n — концентрация частиц, S — площадь поперечного сечения проводника, — средняя скорость упорядоченного движения электронов.

Единица измерения в СИ — 1 Ампер (А) = 1 Кулон / секунду.

Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).

15.

Плотность тока — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

где I - сила тока через поперечное сечение проводника площадью S (также см.рисунок).

  • (Иногда речь может идти о скалярной[1] плотности тока, в таких случаях под ней подразумевается именно та величина j, которая приведена в формуле чуть выше).

В общем случае:

,

где  — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу площади ; вектор - специально вводимый вектор элемента площади, ортогональный элементарной площадке и имеющий абсолютную величину, равную ее площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение.

Как видим из этого определения, сила тока есть поток вектора плотности тока через некую заданную фиксированную поверхность.

В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости и имеют одинаковые заряды (такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их ,

или

где - плотность заряда этих носителей. (Направление вектора соответствует направлению вектора скорости , с которой движутся заряды, создающие ток, если q положително).

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где - концентрация частиц каждого типа, - заряд частицы данного типа, - вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

(сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны).

16.

Участок цепи, на котором не действуют сторонние силы, приводящие к возникновению ЭДС (рис. 1), называется однородным.

Рис. 1

Закон Ома для однородного участка цепи был установлен экспериментально в 1826 г. Г. Омом.

Согласно этому закону, сила тока I в однородном металлическом проводнике прямо пропорциональна напряжению U на концах этого проводника и обратно пропорциональна сопротивлению R этого проводника:

На рисунке 2 изображена схема электрической цепи, позволяющая экспериментально проверить этот закон. В участок MN цепи поочередно включают проводники, обладающие различными сопротивлениями.

Рис. 2

Напряжение на концах проводника измеряется вольтметром и может изменяться с помощью потенциометра. Силу тока измеряют амперметром, сопротивление которого ничтожно мало (RA ≈ 0). График зависимости силы тока в проводнике от напряжения на нем — вольт-амперная характеристика проводника — приведен на рисунке 3. Угол наклона вольт-амперной характеристики зависит от электрического сопротивления проводника R (или его электропроводимости G): .

Рис. 3

17.

Сила тока в цепи зависит не только от напряжения на концах участка, но также и от свойств проводника, включенного в цепь. Зависимость силы тока от свойств проводников объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

Электрическое сопротивление R — физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных носителей зарядов в проводнике. Обозначается сопротивление буквой R. В СИ единицей сопротивления проводника является ом (Ом).

1 Ом — сопротивление такого проводника, сила тока в котором равна 1 А при напряжении на нем 1 В.

Применяются и другие единицы: килоом (кОм), мегаом (МОм), миллиом (мОм): 1 кОм = 103 Ом; 1 МОм = 106 Ом; 1 мОм = 10-3 Ом.

Физическую величину G, обратную сопротивлению, называют электрической проводимостью: .

Единицей электрической проводимости в СИ является сименс: 1 См — это проводимость проводника сопротивлением 1 Ом.

Проводник содержит не только свободные заряженные частицы — электроны, но и нейтральные частицы и связанные заряды. Все они участвуют в хаотическом тепловом движении, равновероятном в любых направлениях. При включении электрического поля под действием электрических сил будет преобладать направленное упорядоченное движение свободных зарядов, которые должны двигаться с ускорением и их скорость должна была бы со временем возрастать. Но в проводниках свободные заряды движутся с некоторой постоянной средней скоростью. Следовательно, проводник оказывает сопротивление упорядоченному движению свободных зарядов, часть энергии этого движения передается проводнику, в результате чего повышается его внутренняя энергия. Из-за движения свободных зарядов искажается даже идеальная кристаллическая решетка проводника, на искажениях кристаллической структуры рассеивается энергия упорядоченного движения свободных зарядов. Проводник оказывает сопротивление прохождению электрического тока.

Сопротивление проводника зависит от материала, из которого он изготовлен, длины проводника и площади поперечного сечения. Для проверки этой зависимости можно воспользоваться той же электрической схемой, что и для проверки закона Ома (рис. 2), включая в участок цепи ΜΝ различные по размерам проводники цилиндрической формы, изготовленные из одного и того же материала, а также из разных материалов.

Результаты эксперимента показали, что сопротивление проводника прямо пропорционально длине l проводника, обратно пропорционально площади S его поперечного сечения и зависит от рода вещества, из которого изготовлен проводник:

где ρ — удельное сопротивление проводника.

Удельное сопротивление проводника — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника, изготовленного из данного вещества и имеющего длину 1 м и площадь поперечного сечения 1 м2, или сопротивлению куба с ребром 1 м. Единицей удельного сопротивления в СИ является ом-метр (Ом·м).

Удельное сопротивление металлического проводника зависит от

  1. концентрации свободных электронов в проводнике;

  2. интенсивности рассеивания свободных электронов на ионах кристаллической решетки, совершающих тепловые колебания;

  3. интенсивности рассеивания свободных электронов на дефектах и примесях кристаллической структуры.

Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца — "нихрома". Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.

18.

Последовательным называется такое соединение резисторов, когда конец одного проводника соединяется с началом другого и т.д. (рис. 1). При последовательном соединении сила тока на любом участке электрической цепи одинакова. Это объясняется тем, что заряды не могут накапливаться в узлах цепи. Их накопление привело бы к изменению напряженности электрического поля, а следовательно, и к изменению силы тока. Поэтому Рис. 1

Амперметр А измеряет силу тока в цепи и обладает малым внутренним сопротивлением (RA → 0).

Включенные вольтметры V1 и V2 измеряют напряжение U1 и U2 на сопротивлениях R1 и R2. Вольтметр V измеряет подведенное к клеммам Μ и N напряжение U. Вольтметры показывают, что при последовательном соединении напряжение U равно сумме напряжений на отдельных участках цепи:

Применяя закон Ома для каждого участка цепи, получим:

где R — общее сопротивление последовательно соединенной цепи. Подставляя U, U1, U2 в формулу (1), имеем

Сопротивление цепи, состоящей из n последовательно соединенных резисторов, равно сумме сопротивлений этих резисторов:

Если сопротивления отдельных резисторов равны между собой, т.е. R1 = R2 = ... = Rn, то общее сопротивление этих резисторов при последовательном соединении в n раз больше сопротивления одного резистора: R = nR1.

При последовательном соединении резисторов справедливо соотношение , т.е. напряжения на резисторах прямо пропорциональны сопротивлениям.

19.

Параллельным называется такое соединение резисторов, когда одни концы всех резисторов соединены в один узел, другие концы — в другой узел (рис. 2). Узлом называется точка разветвленной цепи, в которой сходятся более двух проводников. При параллельном соединении резисторов к точкам Μ и N подключен вольтметр. Он показывает, что напряжения на отдельных участках цепи с сопротивлениями R1 и R2 равны. Это объясняется тем, что работа сил стационарного электрического поля не зависит от формы траектории:

Амперметр показывает, что сила тока I в неразветвленной части цепи равна сумме сил токов I1 и I2 в параллельно соединенных проводниках R1 и R2:

Это вытекает и из закона сохранения электрического заряда. Применим закон Ома для отдельных участков цепи и всей цепи с общим сопротивлением R:

Подставляя I, I1 и I2 в формулу (2), получим:

Величина, обратная сопротивлению цепи, состоящей из n параллельно соединенных резисторов, равна сумме величин, обратных сопротивлениям этих резисторов:

Если сопротивления всех n параллельно соединенных резисторов одинаковы и равны R1 то . Откуда .

Сопротивление цепи, состоящей из n одинаковых параллельно соединенных резисторов, в n раз меньше сопротивления каждого из них.

При параллельном соединении резисторов справедливо соотношение , т.е. силы токов в ветвях параллельно соединенной цепи обратно пропорциональны сопротивлениям ветвей.

20.

Каждое тело способно производить работу, это называется энергией тела. Самый простой пример - поднятое на некоторую высоту тело. Оно обладает потенциальной энергией, если тело отпустить, оно начнёт высвобождать энергию, преобразовывая её в кинетическую энергию, в этот момент тело будет совершать работу. Соответственно, чем выше будет высота тела, тем больше будет и его энергия. Энергия никогда не исчезает бесследно, она лишь преобразовывается в другую форму – это один из главных законов физики. Также обстоит и с электрической энергией, она может быть преобразована в другой вид энергии – тепловую, кинетическую, механическую, химическую и т. д. Поэтому, электроэнергия и стала так широко использоваться. Этот вид энергии, в отличие от любого другого, можно передавать на большие расстояния и хранить, практически, без потерь, а получить её можно достаточно просто. Работа электрического тока Когда ток протекает по определённому участку электрической цепи, электрическое поле совершает определённую работу. Это называется работой электрического тока. Для переноса заряда энергии по этой цепи нужно затратить некоторое количество энергии. Она сообщается приёмнику, часть энергии при этом затрачивается на преодоление сопротивления проводов и источников в электрической цепи. Это говорит о том, что не вся затрачиваемая энергия распределяется эффективно и не вся она является полезной. Следовательно, совершаемая работа также не полностью эффективна. В данном случае формула будет выглядеть так: А = U·Q. U – это напряжение на зажимах приёмника, а Q – это заряд, переносимый по участку цепи. В этом случае нужно учитывать закон Ома для участка цепи, тогда формула будет выглядеть следующим образом: R I2 Δt = U I Δt = ΔA. По этой формуле можно проследить действие закона сохранения энергии, который применяется для однородного участка цепи. В 1850 году английский физик Джоуль Прескотт, вложивший немалый вклад в изучение электричества, открыл новый закон. Суть его заключалась в определении путей, которыми работа электрического тока преобразовывается в тепловую энергию. В это же время другой физик – Ленц смог сделать аналогичное открытие и доказать закон, поэтому он получил название «закон Джоуля-Ленца», в честь обоих выдающихся физиков того времени. Мощность электрического тока Мощность – это другая характеристика, использующаяся при определении работы электрического тока. Это некая физическая величина, которая характеризует преобразование и скорость передачи энергии. При определении мощности электрического тока нужно учитывать такой показатель, как мгновенную мощность. Она представляет собой соотношение мгновенных значений таких показателей как сила тока и напряжение в виде произведения. Это соотношение применяется к определённому участку цепи. Такие показатели как работа и мощность электрического тока учитываются при создании любых электрических цепей. Наравне с другими законами они являются основными, их несоблюдение приведёт к серьёзным нарушениям. Чтобы получит наибольшую мощность электрического тока, нужно учитывать и характеристики генератора, т. е. сопротивление во внешней цепи должно быть не больше и не меньше внутреннего сопротивления генератора. Только в этом случае эффективность работы будет максимальной, потому что иначе вся энергия генератора будет затрачиваться на преодоление сопротивления, а вся работа будет неэкономичной. Естественно, такая схема работы может негативно повлиять на эффективность всей электрической цепи.

21.

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцом[1].

В словесной формулировке звучит следующим образом

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме: где  — мощность выделения тепла в единице объёма,  — плотность электрического тока,  — напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах: Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка В математической форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dt, I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

22.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна:

, где  — элемент длины контура.

ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.