
- •Электрический заряд, его свойства. Закон сохранения заряда. Способы электризации тел. Закон Кулона.
- •2.Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии.
- •3.Понятие о потоке вектора напряженности. Теорема Гаусса для вектора напряженности в вакууме.
- •4.Приминение теоремы Гаусса: поле бесконечно заряженной плоскости
- •5.Приминение теоремы Гаусса: поле плоского конденсатора
- •6.Приминение теоремы Гаусса: поле вне уединенного заряженного шара.
- •7. Консервативность электростатического поля. Теорема о циркуляции вектора напряженности.
- •8. Потенциал электростатического поля.
- •9. Потенциал поля точечного заряда.
- •10. Принцип суперпозиции для потенциала.
- •11. Связь работы с разностью потенциалов.
- •12. Связь напряженности и потенциала.
- •13. Взаимное расположение силовых и эквипотенциальных поверхностей.
- •14. Поле и заряд внутри и вне поверхности проводника при равновесном распределении заряда проводника.
- •15. Электрическая емкость уединенного проводника и конденсатора.
- •16. Энергия системы точечных зарядов.
- •17. Энергия уединенного заряженного проводника и конденсатора.
- •18. Энергия электрического поля.
- •19. Электрический ток. Сила тока. Вектор плотности тока. Электрическое сопротивление.
- •20. Закон Ома для однородного проводника в интегральной и локальной (дифференциальной) формах.
- •21. Сторонние силы. Обобщающий закон Ома в локальной и интегральной формах. Понятие напряженности. Закон Ома для замкнутой цепи.
- •22. Правило Кирхгофа.
- •23. Закон Джоуля-Ленца.
- •24. Электрическое поле в диэлектрике. Поле на границе диэлектрика.
- •27. Применение теоремы Гаусса: поле внутри и вне уединенного объемно заряженного шара
22. Правило Кирхгофа.
Обобщенный закон Ома (см. (100.3)) позволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут иметь общие участки, каждый из контуров может иметь несколько источников тока и т. д.), довольно сложен. Эта задача решается более просто с помощью двух правил Кирхгофа.*
*Г. Кирхгоф (1824—1887) — немецкий физик.
Любая точка разветвления цепи, в которой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла, — отрицательным.
Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:
Например, для рис. 148 первое правило Кирхгофа запишется так:
Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными.
Второе правило Кирхгофа получается из обобщенного закона Ома для разветвленных цепей. Рассмотрим контур, состоящий из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с направлением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать:
Складывая почленно эти уравнения, получим
(101.1)
Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. , встречающихся в этом контуре:
(101.2)
При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:
1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определяется при решении задачи: если искомый ток получится положительным, то его направление было выбрано правильно, отрицательным — его истинное направление противоположно выбранному.
2. Выбрать направление обхода контура и строго его придерживаться; произведение IR положительно, если ток на данном участке совпадает с направлением обхода, и, наоборот, э.д.с., действующие по выбранному направлению обхода, считаются положительными, против — отрицательными.
3. Составить столько уравнений, чтобы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рассматриваемой цепи); каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах, иначе получатся уравнения, являющиеся простой комбинацией уже составленных.