Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
раздел4.docx
Скачиваний:
3
Добавлен:
26.09.2019
Размер:
63.02 Кб
Скачать

4 Раздел

Разность хода, оптическая разность хода.

Для учета того, что в разных веществах скорость света различна, для определения положения min и max используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптическая разность хода.  — оптическая длина пути,

 — оптическая разность хода.

Когерентность и монохроматичность света

Необходимым условием интерференции волн является их когерентность, т.е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Этому условию удовлетворяют монохроматические волны – неограниченные в пространстве волны одной определенной и строго постоянной частоты. Так как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны.

Цуг волн — это ряд возмущений с перерывами между ними. 

Предельное значение позволенного времени   называется временем когерентности цуга, а расстояние, определяющееся временем когерентности, называется длиной когерентности цуга и вычисляется следующим образом:

где c=3·108 м/с — скорость света в вакууме.

Время когерентности, длина когерентности и пространственная когерентность.

 Время когерентности – время, по истечении которого разность фаз волны в некоторой, но одной и той же точке пространства  изменяется на π  Волна с циклической частотой ω и фазовой скоростью    распространяется за это время на расстояние:

,

      где - разность фаз колебаний,     – длина когерентности (длина гармонического цуга, образующегося в процессе излучения одного атома) – расстояние между точками, разность фаз в которых π.

      Таким образом, длина когерентности есть расстояние, при прохождении которого две или несколько волн утрачивают когерентность. Отсюда следует, что наблюдение интерференции света возможно лишь при оптических разностях хода, которые меньше длины когерентности для используемого источника света.

  Когерентность колебаний, определяемая степенью монохроматичности волн, которая совершаются в одной и той же точке пространства, называется временнóй когерентностью.

Наряду с временнóй когерентностью для описания когерентных свойств волн в плоскости, перпендикулярной направлению их распространения, вводится понятие пространственной когерентности. Два источника, размеры и взаимное расположение которых позволяют наблюдать интерференцию, называются пространственно-когерентными.

Способы наблюдения интерференции света, опыт Юнга.

Интерференция света — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

Опыт Юнга — эксперимент, проведённый Томасом Юнгом и ставший экспериментальным доказательством волновой теории света.

В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран.

Этот опыт демонстрирует интерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света.

Если исходить из того, что свет состоит из частиц (корпускулярная теория света), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным.

С другой стороны, если предположить, что свет представляет собой распространяющиеся волны (волновая теория света), то, согласно принципу Гюйгенса  (каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн), каждая прорезь является источником вторичных волн.

Если вторичные волны достигнут линии в середине проекционного экрана, находящейся на равном удалении от прорезей, синхронно и в одной фазе, то на серединной линии экрана их амплитуды прибавятся, что создаст максимум яркости. То есть, максимум яркости окажется там, где согласно корпускулярной теории, яркость должна быть практически нулевой. Корпускулярная теория света является неверной, когда прорези достаточно тонкие, создавая тем самым интерференцию.

На определенном удалении от центральной линии, напротив, волны окажутся в противофазе — их амплитуды компенсируются, что создаст минимум яркости(темная полоса). По мере дальнейшего удаления от средней линии яркость периодически изменяется, возрастая до максимума и снова убывая.

На проекционном экране получается целый ряд чередующихся интерференционных полос, что и было продемонстрировано Томасом Юнгом.