Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika1.doc
Скачиваний:
12
Добавлен:
26.09.2019
Размер:
1.4 Mб
Скачать

1.Явление интерференции состоит во взаимном усилении или ослаблении световых волн при их наложении друг на друга. Необходимым условием наблюдения интерференции световых волн является их когерентность, то есть постоянство разности их фаз в промежутке времени, достаточном для наблюдения. Колебания, вызываемые этими волнами, например, в некоторой точке М2, описываются уравнениями

E1=E01cos(wt – kr1) и

E2=E02cos(wt – kr2),

где r1 и r2 – расстояния от источников света до точки М2. Согласно принципу суперпозиции, при наложении волн возникает результирующее колебание

E=E1+E2=E0cos(wt+a),

амплитуда E0 которого определяется по правилу сложения векторов [1]:

Е02 = Е012 + Е022 + 2Е01E02cos(a2–a1)

В случае когерентных волн разность фаз постоянна (a2 – a1 = const), и в зависимости от ее величины может наблюдаться как взаимное усиление волн, так и их ослабление. Максимальная интенсивность наблюдается при максимальном значении соs(a2 – a1) =1, это будет в точках пространства для которых разности фаз

(5) а минимальная интенсивность – наблюдается при минимальном значении соs(a2 – a1) =-1, это будет в точках пространства для которых разности фаз Из этого в частности следует, что если накладываются когерентные волны равной интенсивности,

I1 = I2, то результирующая интенсивность принимает значения от Imin = 0 до Imax = 4I1.

Формула разности фаз, волн распространяющихся в различных средах, с различными показателями преломления.

(7)

Величина дельта = r2n2 – r1n1 называется оптической разностью хода. Из формул (5)—(7) следует, что максимум и минимум интерференции наблюдается в том случае, если оптическая разность хода соответственно равна (условия максимума и минимума интерференции)

и (8а) (8б)

где т-=- ±0,1,2... – целое число, определяющее порядок интерференционного максимума или минимума.

Условия когерентности:1)их частота одинакова

2)разность их начальных фаз постоянна

3)угол между направлениями поляризации волн остаётся постоянной (CONST)

2 А)РАСЧЕТ ИНТЕРФЕРЕНЦИОННОЙ КАРТИНЫ ОТ 2Х КОГЕРЕНТНЫХ ИСТОЧНИКОВ

Пусть в точке 0 осуществляется принцип Френеля, т.е. раздвоение волны, в т. р находится наблюдатель. Уравнение падающей в точку 0 волны: y=Acosωt 1 проходит путь: OAP=L1; n1; OBP=L2; n2 В точке p обе половинки приходят с разными фазами и 1-я волна возб. в точке p колебания: y1=Acosω(t- L1/v1), а вторая волна: y2=Acosω(t- L2/v2); v1,v2 — фазовые скорости волн, v1=c/n1, v2=c/n2. Разность фаз δ=φ1-φ2=ω(t- L1/v1) — ω(t- L2/v2)=ω(L2n2 — L1n1)=(2ω/c)*(L2n2 — L1n1)=(2π/λo)*(L2n2 — L1n1);

L*n=S — оптическая длина пути. L2n2 — L1n1=S1 — S2 = ∆ - оптическая разность ходов, δ=2π∆/λo => если на оптическую разность хода ∆=+-kλo=+- 2k*(λi/2), k=0,1,2…, δ=+ - (2π/λo)*kλo=+ - 2kπ. Волны приходят в одинаковых фазах и их амплитуда складывается. Это условие интерференционного максимума. Если ∆=+ - (2k+1)*(λo/2), то δ=+ - (2π/λo)*(2k+1)*(λo/2)=+ - (2k+1)π . Волны, приходят в противофазе, т.е. они антифазны и при наложении в т. р, их амплитуда будет вычитаться. Значит это условие интерференционного минимума. Применим это условие прирасчете интерференционной картины от 2х когерентных источников. Два когерентных источника S1 и S2, расстояние между ними d:Опред. рез. наложения волн в точке р: ∆/d=x/L, т.к. L>>d, тоBP≈L, тогда ∆=dx/L.Если ∆Єz, то в точке светлая полоса, x=L∆/d; ∆x=Lλ/d — ширина темной полосы. Для монохромных волн àmax расх. ∆=0, ∆φ=0, кроме max центральн. Б)максимумы интенсивности будут наблюдаться в случае, если (m = 0, 1, 2, …) (8.2.2)

А минимумы – в случае, если . Расстояние между двумя соседними максимумами (или минимумами) равно: и не зависит от порядка интерференции (величины m) и является постоянной для данных l, d. Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами – шириной интерференционной полосы. Т.к. обратно пропорционально d, при большом расстоянии между источниками, например при , отдельные полосы становятся неразличимыми, сравнимыми с длиной волны . Поэтому необходимо выполнять условие . Из перечисленных формул видно, что ширина интерференционной полосы и расстояние между ними зависят от длин волны λ. Только в центре картины при x=0 совпадут максимумы всех волн. По мере удаления от центра максимумы разных цветов смещаются друг относительно друга все больше и больше. Это приводит, при наблюдении в белом свете, ко все большему размытию интерференционных полос. Интерференционная картина будет окрашенной, но нечеткой Измерив , зная l и d, можно вычислить длину волны λ. Именно так вычисляют длины волн разных цветов в спектроскопии.

3 Способы наблюдения интерференции. Обычные источники света не являются когерентными, так как состоят из большого числа атомных излучателей. работающих независимо друг от друга. Для получения интерференционной картины прибегают к искусственным приемам. Сущность подобных методов заключается в том, что световой пучок, идущий от одного источника, делится на два пучка, которые друг другу когерентны и при наложении интерферируют. Например, в методе Юнга свет от точечного источника падает на непрозрачную преграду с двумя близкими узкими щелями, которые расщепляют исходный световой пучок на два когерентных пучка

В области за преградой происходит наложение волн, идущих от щелей. Если в эту область поместить экран, то на его поверхности наблюдается интерференционная картина, представляющая собой чередование темных и светлых полос.

Интерференцию часто можно наблюдать в природе. Например, радужное окрашивание масляных пленок на воде и мыльных пузырей возникает в результате интерференции света, отраженного от поверхностей пленки.

Зеркала и призмы Френеля

Ход лучей

а) в зеркале

b) в бипризме Френеля.

Рассмотрим принцип действия на примере зеркала - бипризма полностью эквивалентна. Пусть на сложенное в тупой угол (p-b) плоское зеркало падает практически нормально плоская волна монохроматического света с длиной волны l. Волна отражается от обеих поверхностей с равным коэффициентом отражения, формируя две отраженные волны, распространяющихся во внешнем пространстве под углом 2b друг к другу. Такие две волны в области их пересечения, показанной лучами на рис.1а, образуют интерференционную картину эквидистантных полос с пространственным периодом L: Полностью то же самое происходит и с бипризмой при падении на нее параллельного пучка, с той лишь разницей что угол между преломленными пучками будет 2(n-1)b, n - показатель преломления стекла призмы, и соответственно период наблюдаемой интерференционной картины будет:

4 Интерференция света в тонких пленках

Интерференцию часто можно наблюдать в природе. Например, радужное окрашивание масляных пленок на воде и мыльных пузырей возникает в результате интерференции света, отраженного от поверхностей пленки. Пусть на плоскопараллельную пленку с показателем преломления п и толщиной d падает плоская монохроматическая

Если , то в точке Р наблюдается максимальная интенсивность света, а если , то минимальная (см. формулы) Полосы равной толщины и равного наклона Оптическая разность хода – функция нескольких величин ∆=f(d, λ, n, i). Если все эти величины меняются одновременно, то четкой интерфериционной картины не наблюдается, наблюдать четкую интерфериционную картину можно тогда, если все величины, кроме одной, постоянны. С практической точки зрения интересны 2 случая:

1) монохроматическая волна падает на плоско-параллельный изотропный слой. В этом случае d, λ, n=const, ∆=f(i). Поскольку волны падают на плоско-параллельную пластину под разными углами, образуют конус, то в следствии интерференции этих волн на экране они соберутся в виде окружности диаметром 0102 (светлой), если выполняются условия ∆1=f(i1)=+ - kλ. С диаметром 01’02’, если ∆2=f(i2)=+ - k2λ, ∆1≠∆2, k1≠k2, i2>i1. Поскольку в этом случае интерферируют волны, падающие на пластинку под одинаковыми углами, то интерферентные полосы называются полосами равного наклона. Они представляют собой светлые кольца, разделенные темными промежутками, отвечающие min, и локализованные в бесконечность. 2) Пучок монохроматических волн падает параллельно на изотропный слой переменной толщины. λ, n, i=const, ∆=f(d). Волны 1 и 2 будут интерферировать, если выполняется условие ∆1=f(x1)=+ - k1λ (1). Для всех точек, соответствующих толщине d1, будет выполняться условие (1) и вблизи поверхности клина образуется интерфериционная полоса, параллельная ребру клина. Во 2 случае ∆2=f(d2)=+ - k2λ (2). В этом случае интерферируют волны, приходящие на поверхность клина в точки, соответствующие ребру клина и приходящиеся на одинаковую толщину. Поэтому наблюдаемые полосы называются полосами равной толщины. Они локализуются вблизи поверхности клина и представляют собой совокупность темных и светлых полос.

5. Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину.

Классическое объяснение явления Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда волна определенной длины падает почти перпендикулярно на плосковыпуклую линзу . Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

— max, где - любое целое число, - длина волны. Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга. — min, где - любое целое число, - длина волны. Для учета того, что в разных веществах скорость света различна, для определения положения min и max используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптическая разность хода.

— оптическая длина пути,

— оптическая разность хода.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо так же учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на , этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном — эллипсы. Радиус k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой: Где R — радиус кривизны линзы;

k = 2, 4, …;

λ — длина волны света в вакууме;

n — показатель преломления среды между линзой и пластин

6. Интерферометр — измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того или иного устройства пространственно разделяется на два или большее количество когерентных пучков. Каждый из пучков проходит различные оптические пути и возвращается на экран, создавая интерференционную картину, по которой можно установить смещение фаз пучков.

Интерферометры применяются как при точных измерениях длин, в частности в станкостроении и машиностроении, так и для оценки качества оптических поверхностей и проверки оптических систем в целом.

Интерферометр Майкельсона — двухлучевой интерферометр, изобретённый Альбертом Майкельсоном. Данный прибор позволил впервые[1] измерить длину волны света. В опыте Майкельсона интерферометр был использован Майкельсоном для проверки гипотезы о светоносном эфире.[1]

Конструктивно состоит из светоделительного зеркала, разделяющего входящий луч на два, которые в свою очередь, отражаются зеркалом обратно. На полупрозрачном зеркале разделённые лучи вновь направляются в одну сторону, чтобы, смешавшись на экране, образовать интерференционную картину. Анализируя её и изменяя длину одного плеча на известную величину, можно по изменению вида интерференционных полос измерить длину волны, либо, наоборот, если длина волны известна, можно определить неизвестное изменение длин плеч. Радиус когерентности изучаемого источника света или другого излучения определяет максимальную разность между плечами интерферометра.

Устройство используется[1] и сегодня в астрономических, физических исследованиях, а также в измерительной технике. В частности, интерферометр Майкельсона лежит в основе оптической схемы современных лазерных гравитационных антенн.

7 Дифракцией света - явление отклонения от прямолинейного распространения волн, огибание волнами препятствий и захождение волн в область геометрической тени. Качественно явление дифракции света объясняется на основе принципа Гюйгенса: каждая точка пространства до которой дошло световое возбуждение становится источником вторичных волн, распространяющихся в данной среде с характерной для нее фазовой скоростью v. ). Количественный расчет дифракционного явления был предпринят: Френелем, который исходил из ряда положений, принимающихся без доказательства и составляющих принцип Гюйгенса-Френеля. Эти положения сводятся к следующему: 1) следуя Гюйгенсу Френель предложил заменить реально действующий источник излучения эквивалентной ему совокупностью вторичных (виртуальных) источников и испускаемых ими торичных волн. 1) В качестве вторичного источника выступают бесконечно малые участки поверхности S замкнутой вокруг So. Выбор поверхности S произволен, но чаще всего поверхность S совпадает с нулевой поверхностью. 2) согласно Френелю все вториные источники когерентны между собой и испускают когерентные волны, в любой точке вне S, волны, идущие от So представляют собой интерференцию вторичных волн. Для поверхности S совпадающей с волновым фронтом все вторичные испускаемые колебания в одной фазе. 3) для поверхности S, совпадающей с волновой поверхностью разные по площади вторичные источники испускают равное по мощности вторичное излучение. dS1=dS2=dSn; dP1=dP2=dPn (P-мощность). 4) Каждый вторичный источник, излучает направление нормали к волновой поверхности в данной точке. Интенсивность излучения (амплитуда) в точке p тем меньше, чем больше угол α между внешней нормалью и радиус-вектором проведенным в точке наблюдения. Фаза результирующего колебания зависит тоже от r (в). 5) если чсть волновой поверхности перекрыто непразрачным экраном, то световое воздействие в точке наблюдателя осуществляется открытыми вторичными источниками. Для нахождения результирующего колебания в точке P, необходимо просуммировать вторичные источники по их амплитуде и фазам. Существует приближенный метод расчета интерференции вторичных волн – метод зон Френеля Метод зон Френеля Пусть в точке S находится точечный источники ионохроматического света, который по всем направлениям испускает сферичные волны.В любой момент времени волновая поверхность - есть сферичная поверхность S. В точке P находится наблюдатель. Для определения светового воздействия в точке P согласно принципу Г-Ф следует заменить реальный волновой фронт эквивалентной совокупностью вторичных источников. В методе зон Френеля в качестве вторичного источника выступают кольцевые зоны получившиеся на поверхности Ф путем проведения с центром в точке P окружности с радиусом r1=r0+λ/2; r2=r1+λ/2=r0+2λ/2; r3=r2+λ/2; rk=r0+kλ/2.=> колебания от каждой последующей зоны сдвинуто по отношению к колебанию от предыдущей зоны на λ/2, т.е. находятся в противофазе и будут гасить друг друга, т.е. их амплитуды будут вычитаться. Ap=A1-A2+A3-A4+…+Ak; Площадь всех зон одинакова. , то все зоны испускают одинаковое по мощности вторичное излучение. До наблюдателя излучения доходят от разлиной интенсивности, т.к. различным является угол α между внешней нормалью и радиус-ветором от зоны до точки наблюдения. Поскольку r1<r2<r3<…<rk, A1>A2>A3…>Ak, ; Ap=A1-A2+A3-A4+…+Ak. Это выражение можно представить в виде: Ap=(A1/2) + ((A1/2) – A2 + (A3/2)) + ((A3/2) – A4 +(A5/2))…+ - Ak/2; (A1+A3)/2=A2, (A3+A5)/2=A4; амплитуда зоны равна полусумме амплитуд соседних зон. Ap=(A1/2) + - (Ak/2). Если k0 полностью открывается волновой фронт, то Ak/20, и Ap=A1/2. В итоге при полностью открытом волновом фронте свет распространяется как бы вдоль узкого канала, соизмеримого с центральной зоной Френеля, т.е. прямолинейна. Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком. Также закон прямолинейного распространения света позволяет объяснить, как возникают солнечные и лунные затмения.

8

;kll;ll;lklk;

iu

8. ДИФРАКЦИЯ ФРЕНЕЛЯ НА КРУГЛЫХ ОТВЕРСТИЯХ

а) CD – экран. Экран с круглым отверстием AB. Исследуем световое воздействие в точке р, лежащей на линии пересечения источника S с центром отр. Отверстие вырезает часть волновой поверхности. Разобьем открытую часть волновой поверхности на зоны Френеля. В зависимости от размеров отверстий на ней укладывается то или иное количество зон. Если отверстие пропускает 1, 3 или 5 зон, то световое воздействие в точке р больше, чем при полностью открытом волновом фронте. Максимум светового воздействия в точке р при k=1 (см последний рисунок в прошлом абзаце). Если отверстие открывает небольшое четное число зон Френеля (k=2,4,6), то световое воздействие всегда больше, чем при полностью открытом волновом фронте. Min воздействия отвечает отверстию в 2 зоны Френеля. б) Дифракция Френеля на … Световая волна встречает на своем пути непрозрачный круглый экран AB (на рисунке ошибка – АВ – там снизу на самом деле). Исследуем световое воздействие в точке p. Экран перекрывает часть зон Френеля. Разобьем открытую часть световой поверхности на зоны Френеля. Согласно рассуждениям методом зон Френеля: A=(An+1)/2 + [(An+1)/2 – (An+2)/2 + (An+3)/2]+ … + - Ak/2. n – число перекрытых зон Френеля. An+1 – амплитуда от 1-ой открытой зоны. A=(An+1)/2. Итак, если число зон, перекрытых экраном AB невелико, точка р останется освещенной, причем интенсивность освещенности не отличается практически от интенсивности освещенности, создаваемой полностью открытым световым фронтом. По мере увеличения размеров экрана АВ амплитуда от 1-ой открытой зоны будет убывать, однако точка р остается освещенной до тех пор, пока число перекрытых зон Френеля достаточно мало и лишь при условии, что экран перекрывает большее число зон Френеля, в точке р будет наблюдаться min, т.е. геометрическая тень от экрана АВ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]