
- •Аксиомы статики
- •Связи и их реакции
- •Системы сходящихся сил. Теорема о существовании равнодействующей. Условия равновесия.
- •Момент силы относительно центра
- •Момент силы относительно оси. Аналитический и геометрический способы.
- •Пара сил. Теорема о сумме моментов сил пары относительно произв. Центра.
- •Теоремы о парах.
- •Лемма о параллельном переносе силы (лемма Пуансо)
- •Основная теорема статики
- •Условия равновесия твердого тела под действием произвольной плоской и пространственной системы сил.
- •Законы трения скольжения. Равновесие при наличии трения скольжения.
- •Трение качения. Равновесие при наличии трения качения.
- •Определение первого и второго статических инвариантов. Частные случаи приведения произвольной системы сил к центру.
- •Теорема Вариньона в векторной и скалярной формах
- •Центр тяжести. Основные методы.
- •Метод интегрирования.
- •Метод симметрии.
- •Метод разбиения.
- •Методы отрицательных весов, объемов и площадей.
- •Способы задания движения точки
- •Определение скорости и ускорения точки при векторном способе задания движения.
- •Координатном
- •Естественном
- •Поступательное движение тела. Теорема о траекториях, скоростях, ускорениях точек тела. Уравнение поступательного движения.
- •Вращательное движения твердого тела. Понятие угловой скорости и ускорения.
- •Определение скоростей и ускорений вращающегося предмета. Формула Эйлера.
- •Понятие сложного, абсолютного, относительного и переносного движений.
- •Теорема о сложении скоростей при сложном движении.
- •Теорема о сложении ускорений при сложном движении. (т. Кориолиса)
- •Ускорение Кориолиса. Способы вычисления.
- •Плоскопараллельное движение.
- •Теорема о скоростях точек тела при его плоском движении и следствия о проекциях скоростей двух его точек на ось, проходящую через 2 эти точки.
- •Мгновенный центр скоростей. Способы нахождения.
- •Теорема об ускорениях точек тела при плоском движении и следствия о проекциях ускорений двух его точек на ось, проходящую через 2 эти точки.
- •Законы динамики
- •Основное уравнение динамики. Дифференциальные уравнения движения м.Т. В проекциях на декартовые и естественные оси. Первая и вторая задача динамики.
- •Основное уравнение динамики относительного движения. Инерциальная система отсчета.
- •Прямолинейные колебания м.Т. Классификация сил, действующих на м.Т. При колебании.
- •Свободные колебания в среде без сопротивления.
- •Свободные колебания в среде с сопротивлением
- •Случай малого сопротивления
- •Случай критического сопротивления
- •Случай большого сопротивления
- •Механическая система. Диффуры движения механической системы.
- •Центр масс, формулы.
- •Теорема о движении центра масс. Следствия.
- •Меры движения: количество движения м.Т. И механической системы, кинетический момент м.Т. И механической системы относительно центра и оси, кинетическая энергия м.Т. И мех. Системы.
- •Меры действия сил: элементарный импульс силы
- •Кинетическая энергия
- •Теорема об изменении количества движения механической системы в диф. И интегральной форме. Следствия.
- •Момент инерции относительно оси. Радиус инерции. Формулы.
- •Теорема об изменении кинетического момента мех.Системы в векторной, скалярной форме. Следствия
- •Диффуры поступательного, вращательного и плоского движения.
- •Теорема об изменении кинетической энергии в диф. И интегральной форме.
- •Теорема Штейнера-Гюйгенса
- •Сила инерции. Принцип Даламбера для м.Т.
- •Приведение системы сил инерции к простейшему виду при поступательном, вращательном и плоском движении.
- •Принцип виртуальных перемещений.
- •Общее уравнение динамики.
- •Обобщенные координаты и скорости. Число степеней свободы.
- •Обобщенные силы и способы вычисления.
- •Условия равновесия механической системы в обобщенных координатах.
- •Для консервативных механических систем необходимым и достаточным условием равновесия является система равенств:
- •Уравнение Лагранжа второго рода.
Момент силы относительно центра
Момент силы относительно точки О - это вектор, модуль которого равен произведению модуля силы на плечо - кратчайшее расстояние от точки О до линии действия силы. Направление вектора момента силы перпендикулярно плоскости, проходящей через точку и линию действия силы, так, что глядя по направлению вектора момента, вращение, совершаемое силой вокруг точки О, происходит по часовой стрелке.
Если известен радиус-вектор r⃗ точки приложения силы F⃗ относительно точки О, то момент этой силы относительно О выражается следующим образом:
M⃗O(F⃗) = r⃗×F⃗.
Действительно, модуль этого векторного произведения:
|M⃗O| = |r⃗×F⃗| = |r⃗||F⃗|sinα.
В соответствии с рисунком |r⃗|sinα = h, поэтому:
|M⃗O| = |F⃗|h.
Момент силы относительно оси. Аналитический и геометрический способы.
Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку называется моментов силы относительно оси.
Момент силы относительно оси вычисляется как момент проекции силы F⃗ на плоскость Π, перпендикулярную оси, относительно точки пересечения оси с плоскостью Π:
Mz(F⃗) = Mz(F⃗Π) = ±FΠh. Знак момента определяется направлением вращения, которое стремится придать телу сила F⃗Π. Если, глядя по направлению оси Oz сила вращает тело по часовой стрелке, то момент берется со знаком «+», иначе – «-».
1. Аналитический
По правилу вычисления векторного произведения:
Откуда
,
,
.
2. Геометрический
Для вычисления момента силы относительно
оси необходимо провести плоскость
(рис. 3.4), перпендикулярную данной оси
,
спроецировать силу на эту плоскость и
вычислить момент проекции
относительно точки
− точки пересечения оси
с плоскостью
.
Эквивалентность этих двух способов
вытекает из равенств
.
Момент положителен, если, глядя с положительного направления оси, вращение видно происходящим против хода часовой стрелки.
Пара сил. Теорема о сумме моментов сил пары относительно произв. Центра.
Пара сил - это система двух равных параллельных сил, направленных в разные стороны
Кратчайшее расстояние между линиями действия сил называют плечом пары h , а плоскость П, где лежит пара сил, является плоскостью пары.
Первое свойство. Пару сил нельзя привести к силе.
Второе свойство. Действие пары сил на твердое тело определяется моментом пары, который является свободным вектором, перпендикулярным плоскости пары, численно равным произведению силы на плечо пары.
Следствия из второго свойства пары.
1. Действие пары на твердое тело не изменяется, если пару сил поворачивают в плоскости пары.
2. Действие пары сил на твердое тело не изменяется, если пару сил переносят в другое место плоскости пары.
3. Действие пары сил на твердое тело не изменяется, если ее перенести в плоскость, параллельную плоскости пары.
Сумма моментов сил пары относительно произвольной точки равна моменту пары.
Доказательство.
Выберем произвольную точку
(рис. 3.7)
. Сумма моментов сил
пары относительно точки
:
,
так как
,
то
.
Следствие: Момент пары не зависит от выбора центра.