Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ссс ответы.doc
Скачиваний:
41
Добавлен:
26.09.2019
Размер:
10.85 Mб
Скачать

Примерное соотношение уровней стеков OSI и TCP/IP показано на рис. 1.2.3.

Рис. 1.2.3. Соотношение уровней стеков OSI и TCP/IP

Ниже перечислены (в направлении сверху вниз) уровни модели OSI и указаны их общие функции.

Уровень приложения (Application) - интерфейс с прикладными процессами.

Уровень представления (Presentation) - согласование представления (форматов, кодировок) данных прикладных процессов.

Сеансовый уровень (Session) - установление, поддержка и закрытие логического сеанса связи между удаленными процессами.

Транспортный уровень (Transport) - обеспечение безошибочного сквозного обмена потоками данных между процессами во время сеанса.

Сетевой уровень (Network) - фрагментация и сборка передаваемых транспортным уровнем данных, маршрутизация и продвижение их по сети от компьютера-отправителя к компьютеру-получателю.

Канальный уровень (Data Link) - управление каналом передачи данных, управление доступом к среде передачи, передача данных по каналу, обнаружение ошибок в канале и их коррекция.

Физический уровень (Physical) - физический интерфейс с каналом передачи данных, представление данных в виде физических сигналов и их кодирование (модуляция).

1. История и тренды теории передачи данных.

Передача информации — физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

  • Источник информации.

  • Приёмник информации.

  • Носитель информации.

  • С реда передачи.

2. Сигналы. Определение и виды сигналов. Модель коммуникационной системы.

Термин "сигнал" (signal, от лат. signum – знак) используется в широком смысловом диапазоне. Под ним понимают:

  • техническое средство для передачи, обращения и использования информации - электрический, магнитный, оптический сигнал;

  • физический процесс, представляющий собой материальное воплощение информационного сообщения - изменение какого-либо параметра носителя информации (напряжения, частоты, мощности электромагнитных колебаний, интенсивности светового потока и т.п.) во времени, в пространстве или в зависимости от изменения значений каких-либо других аргументов;

  • смысловое содержание определенного физического состояния или процесса, например, сигналы светофора, звуковые предупреждающие сигналы и т.п.

Эти понятия объединяет конечное назначение сигналов. Это определенные сведения, сообщения, информация о каких-либо процессах, состояниях или физических величинах объектов материального мира, выраженные в форме, удобной для передачи, обработки, хранения и использования этих сведений.

Термин “сигнал” часто отождествляется с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

В настоящее время мировая наука склоняется к точке зрения, что информация, наряду с материей и энергией, принадлежит к фундаментальным философским категориям естествознания и относится к одному из свойств объективного мира. Что касается “данных” (от лат. datum – факт), то это совокупность фактов, результатов наблюдений, измерений о каких-либо объектах, явлениях или процессах материального мира, представленных в формализованном виде, количественном или качественном [2]. Это не информация, а только атрибут информации - сырье для получения информации путем соответствующей обработки и интерпретации (истолкования). Термин "сигнал" является общепринятым для характеристики формы представления данных, при которой данные рассматриваются как результат некоторых измерений объекта исследований в виде последовательности значений скалярных величин (аналоговых, числовых, графических и пр.) в зависимости от изменения каких-либо переменных значений (времени, энергии, температуры, пространственных координат, и пр.). С учетом этого, в дальнейшем термином “сигнал” будем обозначать упорядоченное отображение в изменении физического состояния какого-либо объекта – материального носителя сигнала, определенных данных о характере изменения в пространстве, во времени или по любой другой переменной физических величин, физических свойств или физического состояния объекта исследований. При этом материальная форма носителей сигналов (механическая, электрическая, магнитная, акустическая, оптическая и любая другая), также как и форма отображения в каких-либо физических параметрах или процессах носителей, значения не имеет. Информативным параметром сигнала может являться любой параметр носителя сигнала, функционально связанный со значениями информационных данных.

Сигнал, в самом общем смысле, это зависимость одной величины от другой, и с математической точки зрения представляет собой функцию. Наиболее распространенное представление сигналов - в электрической форме в виде зависимости напряжения от времени U(t).

Сигналтеории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

В теории информации и связи сигналом называется материальный носитель информации, используемый для передачи сообщений по системе связи. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Аналоговый сигнал

Рис. 3.1. Аналоговый сигнал.

Аналоговый сигнал (analog signal) является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения аргументов. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (“аналогичен”) порождающему его процессу. Пример математической записи сигнала: y(t) = 4.8 exp[-(t-4)2/2.8] (Рис. 3.1), при этом как сама функция, так и ее аргументы, могут принимать любые значения в пределах некоторых интервалов y1 y  y2, t1 t  t2. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

3.2 Дискретный сигнал

Дискретный сигнал (discrete signal) (Рис. 3.2) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента.

Рис. 3.2 Дискретный сигнал

По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nt), где y1 y  y2, t - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/t, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nt.

Пример дискретизации аналогового сигнала, приведенного на рис. 3.1, представлен на рис. 3.2.

3.3 Цифровой сигнал

Рис. 3.3. Цифровой сигнал

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией yn = Qk[y(nt)], где Qk - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при t = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами или ошибками квантования.

3. Системы. Непрерывные и дискретные. Цифровые и аналоговые.

Дискретная система (или цифровой фильтр) – системы обработки цифрового сигнала заданного вектором x, называемого воздействием, преобразующая его в выходной вектор y, называемый реакцией или откликом системы (рисунок 1) в соответствии с преобразованием F.

Рисунок 1

y = F(x) (1)

В общем случае дискретная система обладает памятью, в которой могут сохраняться комбинации входных и выходных отсчетов. Начальные условия дискретной системы могут быть нулевыми и ненулевыми. Признак нулевых начальных условий - отсутствие реакции при отсутствии воздействия. Это означает, что все значения отсчетов воздействия и реакции, которые может помнить система, в моменты времени, предшествующие начальному, равны нулю. При ненулевых начальных условиях при отсутствие воздействия, на выходе дискретной системы наблюдаются отсчеты, значения которых отличны от нуля.

Дискретная система называется линейной, если она обладает следующими свойствами:

- принцип суперпозиция или свойство аддитивности, которое означает, что реакция на сумму воздействий равна сумме реакций на каждое из воздействий по отдельности:

F(x1+ x2 +…xn) = F(x1)+ F(x2) +… F(xn) (2);

- свойство однородности, означающее, что реакция на воздействие умноженное на коэффициент K равна произведению реакции на воздействие (без умножения на K) и коэффициента:

F(K·x) = K·F(x) (3);