
- •4.3 Окислительно-восстановительные реакции
- •4.3.1 Общие сведения об окислительно-восстановительных реакциях
- •Если в формуле (6.1 а) не использовать множитель 100%, то массовая доля будет выражена не в процентах, а в долях единицы.
- •2.1 Зависимость скорости реакции от природы реагирующих веществ
- •2.2 Зависимость скорости реакции от концентрации реагирующих веществ
- •2.3 Зависимостьскорости реакции от температуры
- •2.4 Зависимость скорости реакции от присутствия катализаторов.
- •1. Тривиальная номенклатура
- •4. Радикало-функциональная номенклатура
- •2. Физические свойства спиртов
- •3. Одноатомные предельные спирты.
- •3.1 Методы получения
- •3.2 Химические свойства предельных спиртов
- •4. Двухатомные и трехатомные спирты. Методы получения и химические свойства.
- •5. Фенолы. Общая характеристика. Методы получения и химические свойства.
- •6. Отдельные представители. Методы идентификации.
- •Общая характеристика: строение, классификация, номенклатура
- •2. Способы получения аминов
- •3. Физические свойства аминов
- •4. Химические свойства аминов
- •2. Физические свойства альдегидов и кетонов
- •3. Способы получения
- •4. Химические свойства
- •1 Общая характеристика (строение, классификация, номенклатура, изомерия).
- •Классификация и номенклатура аминокислот.
- •5. С анионобразующими группами в боковых цепях-аспарагиновая и глутаминовая кислоты:
- •Физико-химические свойства аминокислот.
- •Химические реакции аминокислот.
- •Общая характеристика: строение, и свойства белков
- •1.1 Строение белковой молекулы
- •Физико-химические свойства белков.
- •Классификация белков
- •Мальтоза
- •Целлобиоза
- •Лактоза
- •Сахароза
- •Ферментативный гидролиз крахмала и гликогена
- •2. Физические свойства карбоновых кислот
- •3. Способы получения
- •4. Химические свойства
- •Общие признаки, функции, классификация
- •Жирные кислоты
- •Омыляемые липиды
- •Простые липиды
- •Прогоркание жира
- •Сложные липиды Фосфолипиды
- •Гликолипиды
- •Неомыляемые липиды
- •Стероиды
- •Терпены
Жирные кислоты
В природе обнаружено свыше 200 жирных кислот, которые входят в состав липидов микроорганизмов, растений и животных.
Жирные кислоты – алифатические карбоновые кислоты (рисунок 2). В организме могут находиться как в свободном состоянии, так и выполнять роль строительных блоков для большинства классов липидов.
Все жирные кислоты, входящие в состав жиров, делят на две группы: насыщенные и ненасыщенные. Ненасыщенные жирные кислоты, имеющие двеи более двойных связей, называют полиненасыщенными. Природные жирные кислоты весьма разнообразны, однако имеют ряд общих черт. Это монокарбоновые кислоты, содержащие линейные углеводородные цепи. Почти все они содержат четное число атомов углерода (от 14 до 22, чаще всего встречаются с 16 или 18 атомами углерода). Гораздо реже встречаются жирные кислоты с более короткими цепями или с нечетным числом атомов углерода. Содержание ненасыщенных жирных кислот в липидах, как правило, выше, чем насыщенных. Двойные связи, как правило, находятся между 9 и 10 атомами углерода, почти всегда разделены метиленовой группой и имеют цис-конфигурацию.
Встречаются и трансизомеры жирных кислот. Они обнаружены в молочных продуктах, мясе и жире крупного рогатого скота, в гидрогенизированных растительных жирах. Трансизомеры оказывают негативное влияние на здоровье человека: повышая в крови уровень опасных для сосудистых стенок липидов низкой плотности, увеличивают риск возникновения сердечно-сосудистых заболеваний. В странах ЕС пока отсутствуют ограничения на уровень содержания трансизомеров (за исключением Дании). Дания является первой страной, которая ввела стандарт на содержание трансизомеров – не более 2 %.
Рисунок 2 – Основная структура и номенклатура жирных кислот
Высшие жирные кислоты практически нерастворимы в воде, но их натриевые или калиевые соли, называемые мылами, образуют в воде мицеллы, стабилизируемые за счет гидрофобных взаимодействий. Мыла обладают свойствами поверхностно-активных веществ.
Жирные кислоты отличаются:
– длиной их углеводородного хвоста, степенью их ненасыщенности и положением двойных связей в цепях жирных кислот;
– физико-химическими свойствами. Обычно насыщенные жирные кислоты при температуре 22 0С имеют твердую консистенцию, тогда как ненасыщенные представляют собой масла.
Ненасыщенные жирные кислоты имеют более низкую температуру плавления. Полиненасыщенные жирные кислоты быстро окисляются на открытом воздухе, чем насыщенные. Кислород реагирует с двойными связями с образованием пероксидов и свободных радикалов;
– структурной организацией. В насыщенных жирных кислотах углеводородный хвост, в принципе, может принимать бесчисленное множество конфигураций вследствие полной свободы вращения вокруг одинарной связи;
Таблица 1 – Основные карбоновые кислоты, входящие в состав липидов
Число С-атомов |
Число двойных связей |
Наименование кислоты |
Структурная формула |
|
Насыщенные |
||||
12 14 16 18 20 |
0 0 0 0 0 |
Лауриновая Миристиновая Пальмитиновая Стеариновая Арахиновая |
СН3–(СН2)10–СООН СН3–(СН2)12–СООН СН3–(СН2)14–СООН СН3–(СН2)16–СООН СН3–(СН2)18–СООН |
|
Ненасыщенные |
||||
18 18 18 20 |
1 2 3 4 |
Олеиновая Линолевая Линоленовая Арахидовая |
СН3–(СН2)7–СН=СН–(СН2)7–СООН СН3–(СН2)4–(СН=СН–СН2)2–(СН2)6–СООН СН3–СН2–(СН=СН–СН2)3–(СН2)6–СООН СН3–(СН2)4–(СН=СН–СН2)–(СН2)2–СООН |
В высших растениях присутствуют, в основном, пальмитиновая кислота и две ненасыщенные кислоты – олеиновая и линолевая.
Стеариновая кислота в растениях почти не встречается, а содержится в значительном количестве в некоторых твердых животных жирах и маслах тропических растений. Лауриновой кислоты много в лавровом листе, миристиновой – в масле мускатного ореха, арахиновой и бегеновой – в арахисовом и соевом маслах. Полиненасыщенные жирные кислоты – линоленовая и линолевая – составляют главную часть льняного, конопляного, подсолнечного, хлопкового и некоторых других растительных масел. Жирные кислоты оливкового масла на 75% представлены олеиновой кислотой.
В организме человека и животных не могут синтезироваться такие важные кислоты, как линолевая, линоленовая. Арахидоновая – синтезируется из линолевой. Поэтому они должны поступать в организм с пищей. Эти три кислоты получили название незаменимых жирных кислот. Комплекс этих кислот называют витамином F.