Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_po_khimii.docx
Скачиваний:
23
Добавлен:
26.09.2019
Размер:
28.28 Mб
Скачать
    1. Физико-химические свойства белков.

Белки, благодаря присутствию в их составе ионных и полярных группировок (–NH2; –COOH; –SH; –OH и т.д.) существуют в водных растворах в виде заряженных частиц. В зависимости от соотношения в белке основных (NH-аминных) и кислых (–СООН карбоксильных) группировок и рН среды молекула белка в водном растворе приобретает положительный или отрицательный заряд. Большинство белков животного происхождения содержат в своем составе больше дикарбоновых аминокислот аспарагиновой и глютаминовой и поэтому в водных растворах они заряжаются отрицательно (белки-анионы). Некоторые белки содержат в своем составе значительные количества диаминокислот (аргинина, лизина, гистидина) и поэтому заряжаются положительно (белки-катионы). Одноименный заряд молекул способствует взаимному отталкиванию частиц, что обеспечивает устойчивость их в водном растворе.

Белки обладают изоэлектрической точкой, гидрофильностью, способностью к осаждению, способностью денатурировать.

Функции:

1. Ферментативная (каталитическая). В биологических системах почти все реакции катализируются специфическими белками – ферментами. В настоящее время открыто около 300 различных ферментов, каждый из которых служит катализатором определенной биологической реакции. Синтез и распад веществ, их регуляция, перенос химических групп и электронов от одного вещества к другому осуществляется с помощью ферментов.

2. Строительная, структурная функция. Белки образуют основу протоплазмы любой живой клетки, в комплексе с липидами они являются основным структурным материалом всех клеточных мембран всех органелл.

3. Двигательная функция. Любые формы движения в живой природе (работа мышц, движение ресничек и жгутиков у простейших, движение протоплазмы в клетке и т.д.) осуществляется белковыми структурами.

4. Транспортная функция. Перенос различных молекул, ионов осуществляется специфическими белками. Например, белок крови гемоглобин переносит кислород к тканям. Перенос жирных кислот по организму происходит с участием другого белка крови-альбумина.

5. Регуляторная функция. Регуляция углеводного, белкового, липидного обменов осуществляется с помощью гормонов, которые по своему строению относятся к белкам (инсулин) или пептидам (окситоцин, вазопрессин и др.).

6. Защитная – эту функцию выполняют иммуноглобулины (антитела). Они обладают способностью обезвреживать бактерии, вирусы, чужеродные белки, попавшие в организм извне. Процесс свертывания крови, защищающий организм от ее потери, основан на превращениях белка – фибриногена. Кератин – белок волосяного защитного покрова.

7. Фоторецепторные белки: например, родопсин, участвующий в зрительных процессах.

8. Резервные белки используются, как запасной материал для питания развивающегося зародыша и новорожденного организма – это белки семян зернобобовых культур, альбумин – яичный белок, казеин молока.

  1. Классификация белков

Белки в зависимости от химического строения делят на простые и сложные. Простые белки при гидролизе распадаются только на аминокислоты. При гидролизе сложных белков наряду с аминокислотами образуется вещество небелковой природы – простетическая группа. Классификация простых белков основана на их растворимости.

Белки по форме:

1.глобулярные (шаровидная структура, в клетках и тканях)

2. фибриллярные (нитевидная структура)

По растворимости:

1. альбумины - водорастворимые белки

2. броламины - злаковые культуры

3. протеноиды

27

Углеводы являются важным классом природных органических соединений. Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле (до 80 % сухого вещества растений и около 2 % сухого вещества животных организмов составляют углеводы).

В живой природе углеводы выполняют следующие функции:

– источники энергии в метаболических процессах (в растениях - крахмал, в животных организмах - гликоген);

– структурные компоненты клеточных стенок растений (целлюлоза); -–– выполняют роль субстратов и регуляторов специфических биохимических процессов;

– являются составными элементами жизненно важных веществ: нуклеиновых кислот, коферментов, витаминов и др.

– углеводы служат основным компонентом пищи млекопитающих, а человека обеспечивают пищей, одеждой и жилищем.

На долю углеводов приходится 60-70% пищевого рациона. Они содержатся преимущественно в растительных продуктах, являются основными компонентами хлеба, круп, макарон, кондитерских изделий, служат сырьем в бродильной промышленности, в производстве пищевых кислот: уксусной, молочной, лимонной.

Только растения способны осуществлять полный синтез углеводов путем фотосинтеза, в процессе которого вода и углекислый газ превращаются в углеводы под действием солнечного света как источника энергии. Животные организмы не способны синтезировать углеводы и получают их из растительных источников.

Углеводами (или сахарами) называют группу природных веществ, которые в соответствии с химической классификацией являются полигидроксиальдегидами или полигидроксикетонами, либо продуктами их поликонденсации.

Впервые термин «углеводы» был предложен профессором Дерптского (Тартуского) университета К. Шмидтом в 1884 году, в связи с тем, что первые из известных их представителей имели состав Сn2О)m, т. е. их рассматривали как соединения углерода с водой.

В настоящее время известно множество углеводов, по составу не соответствующих этой формуле. Однако термин «углеводы» сохранился, хотя не отражает ни состава, ни химической природы этого класса соединений. Второе название углеводов - (сахара) связано с тем, что многие представители этого класса соединений обладают сладким вкусом, обычный сахар С12Н22О11 входит в их состав.

Классификация углеводов основана на структуре и физико-химических свойствах.

Углеводы подразделяются на две основные группы:

моносахариды: альдозы и кетозы;

полисахариды: низкомолекулярные и высокомолекулярные.

Моносахариды.

Строение

Важнейшими и типичными представителями моносахаридов являются глюкоза (виноградный сахар) и фруктоза (фруктовый сахар). Они изомерны друг другу и имеют молекулярную формулу С6Н12О6

Глюкоза

Фруктоза

Строение моносахаридов было доказано исследованиями многих ученых. Проведен реакции по установлению линейного строения моносахаридов, наличия альдегидной и кетонной групп, гидроксильных групп.

Фруктоза при восстановлении иодистым водородом также дает 2-иодгексан, что доказывает ее линейное строение.

Наличие карбонильной группы можно доказать реакциями взаимодействия с синильной кислотой или с солянокислым гидроксиламином :

Месторасположение карбонильной группы в углеродной цепи доказывается тем, что окисление фруктозы происходит с разрывом углеродной цепи и образованием щавелевой и винной кислот:

щавелевая

кислота

винная

кислота

Пространственные конфигурации моносахаридов D- и L-ряды.

Характерной особенностью моносахаридов является их ярко выраженная способность к таутомерным превращениям. Углеводы были исторически одними из первых веществ, для которых наблюдалось явление таутомерии. Таутомерия - это равновесная, обратимая, самопроизвольная изомерия, т.е. частный случай изомерии. Различают два вида изомерии моносахаридов в растворах:

  1. кето-енольную;

  2. кольчато-цепную или оксо-окси-таутомерию.

В кристаллическом состоянии моносахариды находятся только в циклической форме. В зависимости от условий кристаллизуется либо -, либо -форма. Так, при кристаллизации из воды глюкоза получается в виде -Д-глюкопиранозы, а при кристаллизации из пиридина - в виде -Д-глюкопиранозы. После растворения -Д-глюкопиранозы в воде вначале наблюдается характерное для нее значение удельного вращения, равное [] = + 112,2 0. Однако при стоянии раствора эта величина постепенно снижается и наконец, достигает устойчивого значения +52,50 . Это явление получило название мутаротации.

Мутаротация - явление самопроизвольного изменения угла вращения плоскости поляризации или изменение оптической активности при стоянии свежеприготовленного раствора сахара.

Способы получения моносахаридов

1. Основным способом получения моносахаридов, имеющим практическое значения, является гидролиз ди- и полисахароидов, который происходит под действием кислот или ферментов, водные растворы щелочей не способствуют гидролизу :

Физические свойства моносахаридов: Моносахариды являются твердыми кристаллическими веществами. Все они гигроскопичны, хорошо растворимы в воде, легко образуют сиропы. Растворимость моноз в спирте низкая, в эфире они практически нерастворимы. Растворы моносахаридов имеют нейтральную реакцию по лакмусу и обычно обладают сладким вкусом. Сладость разных моноз различна. Например, фруктоза приблизительно в три раза слаще глюкозы. Растворы моносахаридов обладают оптической активностью, для них характерно явление мутаротации.

Химические свойства белков:

1 Реакции карбонильных форм моносахаридов

а) Окисление. Реакции окисления используют в структурных исследованиях и биохимических анализах для обнаружения моносахаридов. Монозы легко окисляются, причем в зависимости от условий окисления образуются различные продукты.

Пример окисления глюкозы:

б) Восстановление. При восстановлении моноз образуются многоатомные спирты, называемые альдитами (глицитами). Эти кристаллические, легко растворимые в воде вещества обладают сладким вкусом и часто используются как заменители сахара (ксилит, сорбит).

в) Действие щелочей. В разбавленных растворах щелочей при комнатной температуре происходит изомеризация моносахаридов, т.е. получение из одного моносахарида равновесной смеси моноз, отличающихся конфигурацией первого и второго атомов углерода.

2. Реакции с участием гидроксильных групп

Гидроксильные группы имеются в открытых и циклических формах моноз, но содержание циклических форм значительно выше, поэтому реакции идут в циклических ( полуацетальных ) формах :

2.1 Реакции с участием гликозидного гидроксила

При взаимодействии моносахаридов с гидроксилсодержащими соединениями (спиртами, фенолами и др.) в условиях кислотного катализа образуются производные только по гликозидной ОН-группе - циклические ацетали, называемые гликозидами. Cпиртовые гидроксилы моноз в этих условиях не реагируют.

Удобным способом получения гликозидов является пропускание газообразного хлороводорода (катализатор ) через раствор моносахарида в спиртах, например, этаноле, метаноле и т.д. При этом соответственно получаются этил- или метилгликозиды. В названии гликозидов указываются сначала наименования введенного радикала, затем конфигурация аномерного центра и название углеводного остатка с суффиксом - озид.

3 Брожение сахаров

Брожение - это сложный процесс расщепления моносахаридов с выделением СО2 под действием ферментов. Брожению подвергаются сахара, у которых число атомов углерода кратно трем (гексозы).

Брожение гексоз различной конфигурации происходит с неодинаковой легкостью. Существуют и другие виды брожения.

Процессы брожения сахаров играют важную роль и широко используются в промышленности.

Различают разные виды брожения :

Гликозидная связь имеет очень важное биологическое значение. С помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов:

28

Дисахариды – наиболее распространенные олигомерные углеводы, встречающиеся в свободном виде в живых клетках. Олигосахариды большего размера чаще входят в виде компонентов в состав гликопротеинов.

К широко распространенным и имеющим важное значение как компоненты пищевых продуктов, относятся дисахариды: сахароза, лактоза, мальтоза и др.

По химическому строению дисахариды являются гликозидами моносахаридов. Большинство дисахаридов состоят из гексоз, но в природе известны дисахариды, состоящие из одной молекулы гексозы и одной молекулы пентозы.

При образовании дисахарида одна молекула моносахарида всегда образует связь со второй молекулой с помощью своего полуацетального гидроксила. Другая молекула моносахарида может соединяться либо также полуацетальным гидрокислом, либо одним из спиртовых гидроксилов. В последнем случае в молекуле дисахарида будет оставаться свободным один полуацетальный гидроксил.

Отсутствие или наличие в молекуле свободного полуацетального гидроксила очень сильно влияет на свойства данного дисахарида. Если при образовании дисахарида обе молекулы участвовали в образовании простой эфирной связи своими полуацетальными гидрокислами, то у обоих остатков моносахаридов циклические формулы являются закрепленными и без гидролиза дисахарида и последующей окси- оксо-таутомерии карбонильная группа образоваться не может.

Такой дисахарид не обладает восстанавливающими свойствами и не дает других альдегидных реакций: не образует гидразонов с фенилгидразином, не присоединяет синильной кислоты и т.д. и называется невосстанавливающим дисахаридом или типа гликозидо-гликозидом:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]