Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика экзамен.docx
Скачиваний:
22
Добавлен:
26.09.2019
Размер:
610.26 Кб
Скачать

Анализ плоскополяризованного света. Закон Малюса.

Глаз человека не может отличить поляризованный свет от естественного, поэтому для анализа поляризованного свет необходимо использовать поляризаторы, которые в этом случае называются анализаторами. Все ранее перечисленные поляризующие устройства можно использовать для анализа поляризации света. Анализи­ровать поляризованность света первым предложил французский физик Э. Малюс (1775-1812), установив закон изменения интен­сивности поляризованного света.

Возьмем в качестве поляризатора и анализатора дихро­ичный кристалл турмалин (рис. 4.12). Пусть естественный свет падает пер­пендикулярно оптической оси ОО' поляризатора П. Через поляризатор сво­бодно пройдут колебания светового вектора, параллельные плоскости поляризатора. Колебания светового вектора, пер­пендикулярные плоскости поляризации, полностью поглотятся кристаллом турмалина. Ранее уже говорилось о том, что любое колебание вектора Ес можно представить как резуль­тат сложения двух взаимно перпендику­лярных векторов Ех и Еу (рис. 4. 2), а так как колебания вектора Ес естественного света хаотичны и равновероятны, то ин­тенсивность света, прошедшего через поляризатор, равна половине интенсив­ности падающего естественного света:

Если плоско поляризованный свет падает на анализатор А (рис. 4.13), то через него пройдет только составляющая, параллельная главной плоскости анализатора:

Е = Е0 cos,

где  - угол между плоскостями поляризации поляризатора и анализатора. Так как интенсивность света пропорциональна квадрату амплитуды (I ~ E2) ,то для интенсивности света I, вышедшего из анализатора получаем:

I = I0 cos2,

где I0 – ин­тенсивность света, падающего на анализатор. Этот закон называется законом Малюса. Если естествен­ный свет с интенсивностью Iест проходит последовательно сквозь поляризатор и анализатор, то выходящий свет имеет ин­тенсивность

.

При  = 0 (плоскости поляризатора и анализатора параллельны) интенсивность максимальна Imax = 1/2 Iест, при  = π/2 (плоско­сти поляризатора и анализатора взаимно перпендикулярны) ин­тенсивность минимальна Imin = 0.

Для анализа поляризованности света анализатор нужно вращать вокруг луча, если при этом можно найти такое положение, при котором свет сквозь него не проходит (интенсивность стано­вится равной нулю), то такой свет полностью поляризован; если при вращении анализатора интенсивность света не изменяется, такой свет будет естественный.

Оптическая активность веществ. @

При пропускании плоско поляризованного света через не­которые вещества наблюдается вращение плоскости поляриза­ции. Вещества, способные вращать плоскость поляризации, на­зываются оптически активными. Оптической активностью мо­гут обладать кристаллы (кварц, киноварь), жидкости (скипидар, винная кислота), растворы оптически активных веществ в неак­тивных растворителях (водные растворы сахара, яблочной ки­слоты, спиртовые растворы камфоры, стрихнина). Оптическую активность проявляют многие природные соединения: белки, углеводы, гормоны, эфирные масла.

Угол поворота плоскости поляризации для оптически активных кристаллов и чистых жидкостей

= α d

где α –постоянная вращения, угол поворота плоскости поляри­зации слоем вещества единичной толщины; d – расстояние, пройденное светом в оптически активном веществе. Постоянная враще­ния зависит от природы вещества, температуры и длины волны света. Зависимость α от λ, называется дисперсией вращения. Наибольшей оптической активностью обладают некоторые жидкие кристаллы.

Угол поворота плоскости поляризации для оптически активных растворов (закон Био)

= [α] с d

где [α] – удельное вращение, с – массовая концентрация опти­чески активного вещества, d – расстояние, пройденное светом в оптически активном веществе.

Оптическая активность обуславливается как асимметрич­ным строением молекул вещества, так и расположением частиц в кристаллической решетке. В зависимости от направления вра­щения плоскости поляризации оптические вещества делятся на право- и левовращающие. В первом случая осуществляется вра­щение плоскости вправо (по часовой стрелке), во втором – влево (против часовой стрелке).

О

О

Еm

E1

E2

б)

ω2=ω1

О

О'

О

О'

Еm

E1

E2

в)

ω2>ω1

Δ/2

Рис. 4.18

Вращение плоскости поляризации объяснено О. Френелем (1823г.). Он предложил (рис. 4.18 а) линейно поляризованную моно­хроматическую волну представить в виде комбинации двух од­новременно распространяющихся поляризованных по кругу монохроматических волн, векторы на­пряженностей Е1 и Е2 у которых равны половине амплитуды вектора Е и вращаются во взаимно противоположных направлениях с одинаковыми угловыми скоростями (рис. 4.18 б). В оптически активной среде волны Е1 и Е2 распространяются с разными фазовыми ско­ростями. На выходе из слоя толщиной l волны Е1 и Е2 склады­ваются (рис.4.18 в), но между ними возникает сдвиг фаз Δ, про­порциональный толщине слоя l. Плоскость поляризации на вы­ходе (О'О') оказывается повернутой относительно плоскости поляризации на входе (ОО) на угол поворота Δ/2.

Закон Фарадея.

М. Фарадеем (1845г.) было установлено, что вещества, не обладающие естественной оптической активностью, приобре­тают ее под действием магнитного поля. Это явление называется эффектом Фарадея или магнитное вращение плоскости поляризации. Угол поворота плоскости поляризации пропорционален напряженности магнитного поля Н, длине пути света в веществе l.

= V H l

где Vпостоянная Верде (или удельным магнитным враще­нием), которая зависит от природу вещества и длины волны света. Направление магнитного вращения плоскости поляриза­ции определяется направлением магнитного поля и не зависит от направления распространения луча. Так, если отразить луч света с помощью зеркала и заставить пройти через намагничен­ное вещество еще раз только в обратном направлении, то угол поворота плоскости поляризации удвоится. Этим эффект Фара­дея отличается от вращения плоскости поляризации света в ес­тественных оптически активных средах.

Магнитное вращение плоскости поляризации обусловлено воз­никающей под действием магнитного поля прецессией элек­тронных орбит. Оптически активное вещество под дей­ствием магнитного поля приобретает дополнительную способ­ность вращать плоскость поляризации и угол поворота будет ра­вен сумме углов поворота при естественной и искусственной оптических активностей.

Явления вращения плоскости поляризации лежат в ос­нове метода определения концентрации растворов оптически активных веществ. Этот метод называется поляриметрией, а при определении содержания сахара сахариметрией. Они успешно используются в пищевой промышленности, в медицине, при ис­следовании биополимеров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]