- •1.Свет. Интерференция света. Условие максимума и минимума интерференции.
- •Интерференция световых волн.
- •2.Метод расчета интерефекационной картины от 2х. Источников.
- •3. Интерференция света в тонких пленках или полосы ровного наклона.
- •4.Полосы равной толщины или кольца Ньютона.
- •5.Дифракция света. Принцип Гюйгенса .Метод зон Френеля.
- •Метод зон Френеля.
- •6.Дифракция Френеля на круглом отверстии и диске.
- •7.Дифракция Фраунгофера на прямоугольной щели.
- •8. Дисперсия и разрешающая сила спектрального прибора.
- •9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.
- •Анализ плоскополяризованного света. Закон Малюса.
- •Оптическая активность веществ. @
- •10.Методы получения поляризованного света. Закон Брюстера. 2е лучепреломление. Поляризация света при отражении и преломлениина границе раздела двух диэлектрических сред. Закон Брюстера.
- •4. 3. Поляризация света при двойном лучепреломлении.
- •11. Дисперсия света.
- •12.Рассеяние света. Закон Релея .Поглощение света. Закон Ламберта-Бугера.
- •13.Тепловое излучение и его характеристики. Закон Стефана-Больцмана.
- •6. 1. Характеристики теплового излучения. @
- •14. Закон Кирхгофа. Закон смещения вин. Закон Кирхгофа.
- •15. Ультрафиолетовая катастрофа. Постоянная Планка.
- •16. Рентгеновское излучение. Рентгеновская трубка.
- •А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
- •Свет состоит из частиц – квантов;
- •Энергия кванта равна h.
- •18.Эффект Комптона. Давление света.
- •19.Гепотиза Де-Бройля. Формула Де-Бройля. Опыт подтверждающий волновый свойства микрочастиц.
- •20. Соотношение неопределенностей Гейзенберга.
- •21. Волновая функция. Уравнение Шредингера. Пояснение к нему. Волновая функция, её статистический смысл. Задание состояния микрочастицы.
- •Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.
- •22.Квантование энергии частицы. Оценка средней энергии для разных l и m.
- •23. Модель атома по Резерфорду. Постулаты Бора.
- •1. Атом может находиться в различных состояниях, в этих состояниях электрон двигается по определенным стационарным орбитам без излучения и без потери энергии. Эти орбиты называют Боровскими орбитами.
- •24. Опыт Франка и Герца.
- •25. Атом водорода. Общая формула Бальмера.
- •26. Квантовая механическая задача об атоме водорода.
- •27. Квантовые числа m, n, l. Графическое представление энергитических параметров.
- •28. Состав ядра. Характеристики ядра. Размеры ядер.
- •29. Дефект массы. Энергия связи. Ядерные силы. Энергия связи ядра. Дефект массы.
- •Модели ядра: капельная, оболочная. Ядерные силы.
- •31.Радиактивность. Период полураспада.
Модели ядра: капельная, оболочная. Ядерные силы.
К настоящему времени еще нет последовательно законченной теории ядра, которая объясняла бы все его свойства. Это связано в основном с двумя трудностями: с недостаточностью наших знаний о силах взаимодействия нуклонов в ядре и с тем, что каждое атомное ядро - это квантовая система большого количества сильно взаимодействующих частиц. Поэтому в теории атомного ядра очень важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра. Наиболее популярны две основные модели ядра: капельная и оболочная.
1. Капельная модель является простейшей моделью, в ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (~1014 г/см3). Капельная модель позволила вывести полуэмпирическую формулу для энергии связи ядра и помогла объяснить ряд других явлений, в частности, процесс деления тяжелых ядер.
2. Оболочная модель является более реалистичной, в ней считается, что каждый нуклон движется в усредненном поле остальных нуклонов ядра и, в соответствии с этим, имеются дискретные энергетические уровни нуклонов, заполненные с учетом принципа Паули. Эти уровни группируются в оболочки, в каждой из которых может находиться определенное число нуклонов. Полностью заполненные оболочки образуют наиболее стабильные ядра, таковыми являются ядра, в которых количество нуклонов равно 2, 8, 20, 28, 50, 82, 126. Эти числа и соответствующие им ядра называют магическими.
Наблюдаемая в природе стабильность ядер означает, что взаимодействие нуклонов в ядре не может быть сведено к электрическому или гравитационному взаимодействиям. Действительно, между протонами в ядре действуют кулоновские силы отталкивания и гравитационные силы притяжения, но, согласно расчетам, силы притяжения намного меньше сил отталкивания и протоны не могут быть удержаны ими в ядре. Следовательно, в атомных ядрах между нуклонами должно иметь место особое взаимодействие. Это взаимодействие называют сильным ядерным. Ядерные силы – это фундаментальные (основные) силы, действующие между нуклонами и удерживающие их в ядре.
У ядерных сил имеются следующие отличительные особенности:
1. ядерные силы – это силы притяжения, ядерных сил отталкивания не существует;
2. по сравнению с электромагнитными силами они в сотни раз сильнее;
3. эти силы являются короткодействующими и действуют только в пределах ядра (на расстояниях 10-14м.);
4. они обладают зарядовой независимостью, что проявляется в одинаковости сил взаимодействия различных нуклонов;
5. эти силы не являются центральными, то есть они не действуют вдоль прямой, проходящей через центры взаимодействующих нуклонов;
6. ядерные силы зависят от ориентации спинов нуклонов;
7. обладают свойством насыщения, что проявляется в слабой зависимости энергии взаимодействия, приходящейся на один нуклон, от общего числа нуклонов, это связано с тем, что каждый нуклон в ядре взаимодействует с примерно одинаковым числом ближайших нуклонов.
30.Ядерные взаимодействие. Обменные взаимодействия между нуклонами.
Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствие, я́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны). Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов — протоны и нейтроны) в ядрах.
Взаимодействие нуклонов в атомном ядре
На
расстояниях порядка
м величина сильного взаимодействия
между нуклонами, составляющими атомное
ядро, настолько велика, что позволяет
практически не принимать во внимание
их электромагнитное взаимодействие
(отталкивание). Вообще говоря, взаимодействие
нуклонов в ядре не является «элементарным»;
скорее оно является таким же неизбежным
следствием наличия сильного взаимодействия
между частицами, например, составляющими
нуклон кварками, как силы Ван-дер-Ваальса
— следствием существования
электромагнетизма. В хорошем приближении
потенциальная функция взаимодействия
двух нуклонов описывается выражением
,
в
котором
константа сильного взаимодействия,
обычно полагающаяся равной
в «системе констант» фундаментальных
взаимодействий, где, например, постоянная
электромагнитного взаимодействия равна
постоянной тонкой структуры (Такая
потенциальная функция называется
потенциалом Юкавы.) Модуль этой функции
очень быстро убывает и на расстояниях,
больших
уже ничтожно мал.
Вообще радиус ядра можно определить по приближенной формуле
где
общее число нуклонов в ядре.
