
- •1.Свет. Интерференция света. Условие максимума и минимума интерференции.
- •Интерференция световых волн.
- •2.Метод расчета интерефекационной картины от 2х. Источников.
- •3. Интерференция света в тонких пленках или полосы ровного наклона.
- •4.Полосы равной толщины или кольца Ньютона.
- •5.Дифракция света. Принцип Гюйгенса .Метод зон Френеля.
- •Метод зон Френеля.
- •6.Дифракция Френеля на круглом отверстии и диске.
- •7.Дифракция Фраунгофера на прямоугольной щели.
- •8. Дисперсия и разрешающая сила спектрального прибора.
- •9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.
- •Анализ плоскополяризованного света. Закон Малюса.
- •Оптическая активность веществ. @
- •10.Методы получения поляризованного света. Закон Брюстера. 2е лучепреломление. Поляризация света при отражении и преломлениина границе раздела двух диэлектрических сред. Закон Брюстера.
- •4. 3. Поляризация света при двойном лучепреломлении.
- •11. Дисперсия света.
- •12.Рассеяние света. Закон Релея .Поглощение света. Закон Ламберта-Бугера.
- •13.Тепловое излучение и его характеристики. Закон Стефана-Больцмана.
- •6. 1. Характеристики теплового излучения. @
- •14. Закон Кирхгофа. Закон смещения вин. Закон Кирхгофа.
- •15. Ультрафиолетовая катастрофа. Постоянная Планка.
- •16. Рентгеновское излучение. Рентгеновская трубка.
- •А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
- •Свет состоит из частиц – квантов;
- •Энергия кванта равна h.
- •18.Эффект Комптона. Давление света.
- •19.Гепотиза Де-Бройля. Формула Де-Бройля. Опыт подтверждающий волновый свойства микрочастиц.
- •20. Соотношение неопределенностей Гейзенберга.
- •21. Волновая функция. Уравнение Шредингера. Пояснение к нему. Волновая функция, её статистический смысл. Задание состояния микрочастицы.
- •Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.
- •22.Квантование энергии частицы. Оценка средней энергии для разных l и m.
- •23. Модель атома по Резерфорду. Постулаты Бора.
- •1. Атом может находиться в различных состояниях, в этих состояниях электрон двигается по определенным стационарным орбитам без излучения и без потери энергии. Эти орбиты называют Боровскими орбитами.
- •24. Опыт Франка и Герца.
- •25. Атом водорода. Общая формула Бальмера.
- •26. Квантовая механическая задача об атоме водорода.
- •27. Квантовые числа m, n, l. Графическое представление энергитических параметров.
- •28. Состав ядра. Характеристики ядра. Размеры ядер.
- •29. Дефект массы. Энергия связи. Ядерные силы. Энергия связи ядра. Дефект массы.
- •Модели ядра: капельная, оболочная. Ядерные силы.
- •31.Радиактивность. Период полураспада.
Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.
Для расчета волновой функции необходимо иметь уравнение, которое позволяло бы для любого момента времени определить эту функцию с учетом действующих на частицу внешних силовых полей. Чтобы искомое уравнение учитывало волновые свойства микрочастиц, необходимо чтобы оно по форме было волновым уравнением, подобно тем, которые описывают звуковые или электромагнитные волны. Известно, что для плоской волны, распространяющейся вдоль оси х, волновое уравнение – это дифференциальное уравнение в частных производных, где независимыми переменными являются координаты и время. Учитывая такие аналогии, австрийский физик Эрвин Шредингер получил в 1926 г. основное уравнение квантовой механики для ψ (х, у, z, t)
,
(1.10)
где m – масса частицы, i – мнимая единица, U – потенциальная энергия частицы, Δ‑оператор Лапласа, который представляет собой сумму вторых частных производных по координатам, т.е.
(1.11)
Из уравнения Шредингера следует, что конкретный вид волновой функции зависит от потенциальной энергии U, т.е. определяется характером сил, действующих на частицу. Уравнение Шредингера оказалось комплексным (включающим в себя мнимую единицу), поэтому и волновая функция также комплексная, при этом реальный физический смысл имеет квадрат модуля волновой функции (2.5, 2.6), который всегда действителен.
Уравнение Шредингера, будучи дифференциальным уравнением, может иметь множество решений. Из этих решений смысл имеют только те, в которых волновая функция будет однозначной, непрерывной и конечной, что соответствует физической реальности. Эти требования должны относиться и к частным производным от функции по времени и координатам, так как они тоже входят в уравнения Шредингера. Кроме этих требований на волновую функцию накладывается условие нормировки
,
(1.12)
которое следует из того факта, что частица реально существует и обязательно находится где-либо в окружающем пространстве. Поэтому суммарная вероятность нахождения частицы во всем бесконечном пространстве равна единице, т.е. это достоверное событие. Смысл и назначение уравнения Шредингера заключается в том, что если известна волновая функция некоторой частицы в начальный момент времени и известно силовое поле, в котором она движется, то, решив это уравнение, можно найти волновую функцию и узнать характеристики состояния частицы в последующие моменты времени.
Если силовое
поле, в котором движется частица,
постоянно во времени, то U не зависит от
времени и волновую функцию можно
представить в виде
,
где Е – полная энергия частицы. Если
мы подставим такую функцию в уравнение
Шредингера, проведем дифференцирование
и сокращение, то получим уравнение
(1.13)
Это - уравнение Шредингера для, так называемых, стационарных состояний, находясь в которых частица имеет определенные, не меняющиеся со временем характеристики.