
- •1.Свет. Интерференция света. Условие максимума и минимума интерференции.
- •Интерференция световых волн.
- •2.Метод расчета интерефекационной картины от 2х. Источников.
- •3. Интерференция света в тонких пленках или полосы ровного наклона.
- •4.Полосы равной толщины или кольца Ньютона.
- •5.Дифракция света. Принцип Гюйгенса .Метод зон Френеля.
- •Метод зон Френеля.
- •6.Дифракция Френеля на круглом отверстии и диске.
- •7.Дифракция Фраунгофера на прямоугольной щели.
- •8. Дисперсия и разрешающая сила спектрального прибора.
- •9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.
- •Анализ плоскополяризованного света. Закон Малюса.
- •Оптическая активность веществ. @
- •10.Методы получения поляризованного света. Закон Брюстера. 2е лучепреломление. Поляризация света при отражении и преломлениина границе раздела двух диэлектрических сред. Закон Брюстера.
- •4. 3. Поляризация света при двойном лучепреломлении.
- •11. Дисперсия света.
- •12.Рассеяние света. Закон Релея .Поглощение света. Закон Ламберта-Бугера.
- •13.Тепловое излучение и его характеристики. Закон Стефана-Больцмана.
- •6. 1. Характеристики теплового излучения. @
- •14. Закон Кирхгофа. Закон смещения вин. Закон Кирхгофа.
- •15. Ультрафиолетовая катастрофа. Постоянная Планка.
- •16. Рентгеновское излучение. Рентгеновская трубка.
- •А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
- •Свет состоит из частиц – квантов;
- •Энергия кванта равна h.
- •18.Эффект Комптона. Давление света.
- •19.Гепотиза Де-Бройля. Формула Де-Бройля. Опыт подтверждающий волновый свойства микрочастиц.
- •20. Соотношение неопределенностей Гейзенберга.
- •21. Волновая функция. Уравнение Шредингера. Пояснение к нему. Волновая функция, её статистический смысл. Задание состояния микрочастицы.
- •Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.
- •22.Квантование энергии частицы. Оценка средней энергии для разных l и m.
- •23. Модель атома по Резерфорду. Постулаты Бора.
- •1. Атом может находиться в различных состояниях, в этих состояниях электрон двигается по определенным стационарным орбитам без излучения и без потери энергии. Эти орбиты называют Боровскими орбитами.
- •24. Опыт Франка и Герца.
- •25. Атом водорода. Общая формула Бальмера.
- •26. Квантовая механическая задача об атоме водорода.
- •27. Квантовые числа m, n, l. Графическое представление энергитических параметров.
- •28. Состав ядра. Характеристики ядра. Размеры ядер.
- •29. Дефект массы. Энергия связи. Ядерные силы. Энергия связи ядра. Дефект массы.
- •Модели ядра: капельная, оболочная. Ядерные силы.
- •31.Радиактивность. Период полураспада.
16. Рентгеновское излучение. Рентгеновская трубка.
Рентгеновское излучение.
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м)
В 1895 г. немецкий физик В.Рентген обнаружил, что при электрическом разряде в вакуумной трубке возникает невидимое для глаз излучение, обладающее высокой проникающей способностью. Излучение вначале было названо Х-лучами, а затем получило название рентгеновского. Оно занимает диапазон длин волн от 2∙10-9 до 6∙10-12м. Рентгеновские лучи вызывают флуоресценцию некоторых веществ, ионизацию газов, оказывают фотохимическое и биологическое воздействие на тела
Рентгеновская трубка
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена или меди.
17.Фотоэффект. Законы фотоэффекта. Гипотезы Эйнштейна о корпускулярно-волновых свойствах света.
Явление вырывания электронов из вещества под действием света (электромагнитного излучения) называют внешним фотоэффектом.
А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально интенсивности светового потока Е (количеству энергии падающей со светом за единицу времени на единичную поверхность катода) и не зависит от частоты света.
Для каждого вещества существует определенная для данного вещества минимальная частота 0, при которой еще возможен фотоэффект. Если частота света меньше минимальной частоты, то фотоэффект не происходит (0 называется «красной границей фотоэффекта», так как для многих металлов 0 лежит в области красного света.).
3. Максимальная начальная скорость вырываемых электронов определяется частотой света и не зависит от интенсивности падающего светового потока
Закон сохpанения энергии позволяет написать пpостое соотношение, связывающее скоpость фотоэлектpонов с частотой поглощаемого света:
hv=А+Ek,
где hv - энергия, которую отдаёт фотон электрону вещества, А- работа выхода электрона из вещества, Ek = mv2/2 - кинетическая энергия освобождённого электрона. Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта. Теория Эйнштейна объясняет все законы Столетова.
Первый закон следует из того, что интенсивность света пропорциональна числу фотонов падающих за единицу времени на единичную поверхность, а каждый фотон вырывает примерно один электрон. Поэтому увеличение числа фотонов вызывает возрастание числа испущенных в единицу времени электронов. При этом в эксперименте с фотоэлементом, сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества.
Также становится ясно, что фотоэффект могут вызывать только фотоны соответствующие свету достаточно высокой частоты. Если h < A, то энергии фотона не хватит на вырывание электронов и они из поверхности металла не испускаются. Это означает, что фотоэффект будет происходить только при h > A, т.е. существует некоторая минимальная частота 0 = A/h, при которой начинается это явление (или граничная частота фотоэффекта).
Из формулы Эйнштейна следует также третий закон Столетова, так как видно что, максимальная начальная скорость электронов зависит только от частоты и материала катода (А). Увеличение интенсивности света вызывает лишь возрастание числа испущенных в единицу времени электронов, но не влияет на их энергию.
Опыты по экспериментальной проверке уравнения Эйнштейна были проведены Милликеном на установке подобной установке Столетова. Метод Милликена заключается в исследовании зависимости значения задерживающего потенциала Uз от частоты света и его интенсивности. Испущенные электроны с энергией Ek = h - А движутся к аноду, если потенциал Uз такой, что eUз > Ek, то ни один из электронов не может достичь коллектора и фототок исчезает, что позволяет измерить Uз. Согласно Эйнштейну, Uз = (h - А)/e и не зависит от интенсивности света. Эксперименты подтвердили все выводы теории Эйнштейна и позволили найти величину h, которая совпала с величиной постоянной Планка. Этот эксперимент подтвердил два предположения: