
- •1.Свет. Интерференция света. Условие максимума и минимума интерференции.
- •Интерференция световых волн.
- •2.Метод расчета интерефекационной картины от 2х. Источников.
- •3. Интерференция света в тонких пленках или полосы ровного наклона.
- •4.Полосы равной толщины или кольца Ньютона.
- •5.Дифракция света. Принцип Гюйгенса .Метод зон Френеля.
- •Метод зон Френеля.
- •6.Дифракция Френеля на круглом отверстии и диске.
- •7.Дифракция Фраунгофера на прямоугольной щели.
- •8. Дисперсия и разрешающая сила спектрального прибора.
- •9.Поляризация света. Закон Малюса. Вращение плоскасти поляризации. Закон Фарадея.
- •Анализ плоскополяризованного света. Закон Малюса.
- •Оптическая активность веществ. @
- •10.Методы получения поляризованного света. Закон Брюстера. 2е лучепреломление. Поляризация света при отражении и преломлениина границе раздела двух диэлектрических сред. Закон Брюстера.
- •4. 3. Поляризация света при двойном лучепреломлении.
- •11. Дисперсия света.
- •12.Рассеяние света. Закон Релея .Поглощение света. Закон Ламберта-Бугера.
- •13.Тепловое излучение и его характеристики. Закон Стефана-Больцмана.
- •6. 1. Характеристики теплового излучения. @
- •14. Закон Кирхгофа. Закон смещения вин. Закон Кирхгофа.
- •15. Ультрафиолетовая катастрофа. Постоянная Планка.
- •16. Рентгеновское излучение. Рентгеновская трубка.
- •А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
- •Свет состоит из частиц – квантов;
- •Энергия кванта равна h.
- •18.Эффект Комптона. Давление света.
- •19.Гепотиза Де-Бройля. Формула Де-Бройля. Опыт подтверждающий волновый свойства микрочастиц.
- •20. Соотношение неопределенностей Гейзенберга.
- •21. Волновая функция. Уравнение Шредингера. Пояснение к нему. Волновая функция, её статистический смысл. Задание состояния микрочастицы.
- •Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.
- •22.Квантование энергии частицы. Оценка средней энергии для разных l и m.
- •23. Модель атома по Резерфорду. Постулаты Бора.
- •1. Атом может находиться в различных состояниях, в этих состояниях электрон двигается по определенным стационарным орбитам без излучения и без потери энергии. Эти орбиты называют Боровскими орбитами.
- •24. Опыт Франка и Герца.
- •25. Атом водорода. Общая формула Бальмера.
- •26. Квантовая механическая задача об атоме водорода.
- •27. Квантовые числа m, n, l. Графическое представление энергитических параметров.
- •28. Состав ядра. Характеристики ядра. Размеры ядер.
- •29. Дефект массы. Энергия связи. Ядерные силы. Энергия связи ядра. Дефект массы.
- •Модели ядра: капельная, оболочная. Ядерные силы.
- •31.Радиактивность. Период полураспада.
1.Свет. Интерференция света. Условие максимума и минимума интерференции.
В конце XIX века английский физик Дж.К.Максвелл на основе своих уравнений создал единую электромагнитную теорию световых волн, согласно которой, свет – это множество электромагнитных волн. Электромагнитная волна – это распространяющееся в пространстве электромагнитное поле, которое характеризуется векторами напряженностей Е и Н электрического и магнитного полей. Согласно теории Максвелла, вектора Е и Н перпендикулярны друг другу и направлению распространения волны, откуда следует, что электромагнитные волны поперечны.
Интерференция световых волн.
Если монохроматические световые волны имеют постоянную во времени разность фаз и колебания их световых векторов происходят в одной плоскости, то они называются когерентными (от греч. cohereus - согласованный). Такие согласованные когерентные волны при наложении их друг на друга могут создать в пространстве картину, заключающуюся в чередовании светлых и темных областей. Данное явление перераспределения интенсивности световой волны в пространстве при наложении двух или нескольких когерентных волн называется интерференцией света.
Если
в произвольной точке пространства
оптическая разность хода накладываемых
волн равна нечетному числу полуволн,
то в ней наблюдается минимум интерференции.
Условие
есть условие
интерференционного
минимума.
Если
в произвольной точке пространства
оптическая разность хода накладываемых
волн равна четному числу полуволн или
целому числу длин волн, то в ней наблюдается
максимум интерференции и условие
является
условием
интерференционного максимума
2.Метод расчета интерефекационной картины от 2х. Источников.
Метод Юнга. Получение интерференционной картины
В
1803г. английский физик Т.Юнг с помощью
двух щелей получил на экране
интерференционную картину. Его опыт
заключался в следующем: источником
света служила ярко освещенная щель
S,
от которой световая волна падала на две
узкие равноудаленные щели S1
и S2,
параллельные S (рис. 2.2). Щели S1
и S2
можно считать когерентными источниками
света, а все три упомянутые щели можно
рассматривать как точечные источники,
свет от которых распространяется во
всех направлениях. Волны, идущие от
S1
и S2,
накладываясь друг на друга, интерферируют.
Интерференционная картина наблюдается
на экране Э (рис. 2.2).
Обозначим расстояние между щелями S1 и S2 равным d, а между щелями и экраном - l, причем l » d (рис. 2.3 а). Точка О – центр экрана, она расположена симметрично относительно щелей S1 и S2. Результат интерференции волн в произвольной точке экрана М, находящейся на расстоянии х от его центра О, должен определяться разностью хода Δ = l2- l1. Математический расчет дает для разности хода Δ = хd/l. В тех местах экрана, которые удовлетворяют условию , образуется интерференционный максимум. Отсюда
.
В тех местах экрана, где , волны “гасят” друг друга и образуется интерференционный минимум. Отсюда
.
Шириной интерференционной полосы Δх называется расстояние между соседними максимумами или минимумами
.
Величина Δх постоянна при заданных d, l и λ и не зависит от порядка интерференции m. Таким образом, при освещении щелей монохроматическим светом на экране наблюдается чередование светлых и темных полос одинаковой ширины (рис. 2.3 б). Чтобы полосы были хорошо различимы, Δх должна быть порядка 5 мм, тогда при λ = 500 нм отношение l/d равно 10000, т.е. выполняется условие l » d.
При освещении щелей белым светом интерференционные максимумы становятся радужными. Это происходит из-за того, что положение интерференционного максимума зависит от длины волны падающего света, а белый свет содержит в себе все цвета спектра. Максимумы коротких длин волн (фиолетовых) будут располагаться ближе к центру экрана, за ними следуют максимумы синих длин волн и т.д. до самых длинных красных (рис. 2.3 в). В середине экрана при m = 0 максимумы всех волн совпадут из-за отсутствия разности хода и получится белая полоса.
В настоящее время высокая степень когерентности световых лучей достигается с помощью лазеров.