
- •Основные понятия: машина, механизм, сборочная единица (узел), деталь. Классификация элементов механизмов: соединения, передачи, несущие и базирующие элементы.
- •Стадии разработки конструкторской документации – содержание каждой из них.
- •Требования к деталям – основные и специальные.
- •Виды разрушения зубчатых передач и зубьев, основные меры их предупреждения. Основные критерии расчета.
- •Прямозубая цилиндрическая передача – применение, достоинства, недостатки. Материалы шестерен и зубчатых колес. Силы в зацеплении, особенности конструирования опор валов цилиндрических передач.
- •Конические зубчатые передачи – достоинства, недостатки, применение. Материалы шестерен и зубчатых колес. Силы в зацеплении. Особенности конструкции опор валов конических колес. Смазка.
- •Шевронная цилиндрическая передача – применение, достоинства, недостатки. Силы в зацеплении, особенности конструирования опор валов шевронных цилиндрических колес. Смазка.
- •Планетарные передачи – принцип действия, применение, достоинства, недостатки. Основные параметры – модуль, передаточное отношение. Критерии работоспособности. Смазка.
- •Волновые передачи – принцип действия, применение, достоинства, недостатки. Модуль, передаточное отношение. Критерии работоспособности передач. Смазка.
- •Валы и оси: назначение, классификация, материалы. Выбор расчетных схем. Сущность проектного и проверочных расчетов.
- •Классификация
- •Уплотнительные устройства вращающих валов – назначение, классификация, применимость в зависимости от условий работы и скорости вращения вала.
- •Пружины – применение, классификация. Пружины растяжения и сжатия – основные геометрические параметры, материалы, изготовление. Основные характеристики пружин (податливость, жесткость).
- •Муфты глухие – конструкция, назначение, классификация, достоинства, недостатки. Выбор муфты, критерии расчета.
- •Муфты компенсирующие жесткие – конструкция, назначение.
- •Муфты упругие (с неметаллическим упругим элементом) – конструкция, применение, достоинства, недостатки, выбор.
- •Муфты сцепные – классификация, примеры конструкций муфт (зубчатая и фрикционная), применение, достоинства, недостатки.
- •Резьбовые соединения – классификация и основные параметры резьбы. Силы в резьбе, угол трения, коэффициент трения. Условие самоторможения в резьбе. Основные расчетные критерии.
- •Резьбовые соединения – назначение, основные крепежные детали, способы стопорения резьбовых соединений.
- •Шпоночные соединения – назначение, применение, выбор шпонки и ее проверка на прочность.
- •Шлицевые соединения – назначение, классификация, достоинства, недостатки, критерии расчета.
- •Сварные соединения – назначение, способы сварки, виды сварных соединений, типы сварных швов. Условие прочности стыкового сварного шва, шва внахлестку. Обозначение сварных швов на чертеже.
- •Заклепочные соединения – назначение, виды клепки, горячая клепка, холодная клепка, классификация заклепочных швов и заклепок. Меры повышения прочности заклепочных соединений.
- •Профильное, конусное и штифтовое соединение деталей типа вал-втулка. Назначение, классификация, достоинства, недостатки. Критерии расчета.
- •Соединение деталей пайкой – назначение, достоинства, недостатки. Припои, их назначение и материалы. Оценка качества и прочности паяных соединений.
- •Соединение склеивание – применение, достоинства, недостатки. Оценка прочности и качества клеевого соединения.
- •Основные принципы конструирования машин.
Валы и оси: назначение, классификация, материалы. Выбор расчетных схем. Сущность проектного и проверочных расчетов.
Вал – деталь машин, предназначенная для поддержания сидящих на нем деталей и передачи крутящего момента. При работе вал испытывает деформации кручения и изгиба, иногда – растяжения-сжатия. Ось – деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный крутящий момент, а, следовательно, не испытывает кручения.
Классификация валов и осей
Виды валов: 1) коренные, 2) шпиндели, 3)трансмиссионные. По форме геометрической оси валы бывают: 1) прямые, 2) коленчатые; 3)гибкие.
Прямые валы делятся на:
а) гладкие цилиндрические;
б) ступенчатые;
в) валы – шестерни, валы – червяки;
г) фланцевые;
д) карданные.
По форме поперечного сечения:
а) гладкие сплошного сечения;
б) пустотелые (для размещения соосного вала, деталей управления, подачи масла, охлаждения);
в) шлицевые. По типу сечения валы бывают: 1) сплошные; 2) полые. Оси бывают вращающиеся и неподвижные. Прямые валы и оси изготавливают гладкими или ступенчатыми. Образование ступеней связано с различной напряженностью отдельных сечений, а также с условиями изготовления и сборки.
Материалы, применяемые для изготовления валов и осей
Материалы валов и осей должны быть прочными, хорошо обрабатываться и иметь высокий модуль упругости. Основными материалами для валов служат углеродистые и легированные стали. Для большинства валов применяют термически обработанные среднеуглеродистые и легированные стали 45, 40Х. Для высоконапряжённых валов ответственных машин применяют легированные стали 40ХН, 20Х, 12ХНЗА. Для осей обычно применяют сталь углеродистую обыкновенного качества. Заготовки валов и осей – это круглый прокат или специальные поковки.
Конструктивные элементы валов и осей Опорная часть вала или оси называется цапфой (рис.3.1.1). Шипом 1 называется цапфа, расположенная на конце вала и передающая преимущественно радиальную нагрузку. Шейкой 2 называется цапфа, расположенная в средней части вала или оси. Шипы и шейки по форме могут быть цилиндрическими, коническими, сферическими.
Опорами для шипов и шеек служат подшипники. Кольцевое утолщения вала, составляющее с ним одно целое, называется буртиком (рис.3.1.3).
Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечником (рис. 3.1.4).
Переходные участки между двумя ступенями валов выполняют канавкой (поднутрением) или галтелью (рис. 3.1.5).
Рекомендации по конструированию валов и осей
Валы и оси следует конструировать по возможности гладкими с минимальным числом уступов. Каждая насаживаемая на вал или ось деталь должна свободно проходить до своей посадочной поверхности. Торцы валов и осей и их уступы выполняют с фасками (рис.3.1.2, 3.1.4) для удобства насадки деталей. Для увеличения изгибной жесткости валов и осей насаживаемые детали располагают ближе к опорам. Для повышения несущей способности валов и осей их поверхность подвергают упрочнению.
Критерии работоспособности валов и осей Валы и вращающиеся оси при работе испытывают циклически изменяющиеся напряжения. Основным критерием их работоспособности являются сопротивление усталости и жесткость. Сопротивление усталости оценивается коэффициентом запаса прочности, а жесткость – прогибом в местах посадки деталей и углами закручивания сечений. Практикой установлено, что основной вид разрушения валов и осей быстроходных машин носит усталостный характер. Расчетными силовыми факторами являются крутящие и изгибающие моменты.
Основным критерием работоспособности валов и осей являются сопротивление усталости материала и жёсткость. Расчёт валов выполняется в два этапа: предварительный (проектный) и окончательный (проверочный). Проектировочный расчёт вала выполняют как условный расчёт только на кручение для ориентировочного определения посадочных диаметров. Исходя из условия прочности на кручение
получим формулу проектировочного расчёта
где
Мk
– крутящий момент в расчётном сечении,
Н*м;
Н/мм2 – допускаемое напряжение при
кручении
Проверочный
расчет для валов
- расчёт на сопротивление усталости -
является основным расчётом на прочность.
Основными нагрузками на валы являются
силы от передач через насаженные на них
детали: зубчатые или червячные колёса,
звёздочки, шкивы. Проверочный расчет
вала производится с применением гипотез
прочности.Условие прочности в этом
случае имеет вид:
Подшипники качения – конструкция, классификация и область применения. Выбор подшипника. Конструкции подшипниковых узлов. Смазка, регулировка. Расшифровка обозначения подшипника. Основные причины разрушения подшипников, критерии расчета подшипников качения.
Подшипники качения – это опоры вращающихся или качающихся деталей, использующие элементы качения (шарики или ролики) и работающие на основе трения качения.
Основные детали подшипников качения. Подшипники качения состоят из следующих деталей: 1 – наружного кольца с диаметром D; 2 – внутреннего кольца с диаметром отверстия d и шириной B; 3 – тел качения c диаметром Dw (шариков или роликов), которые катятся по дорожкам качения колец; 4 – сепаратора, отделяющего и удерживающего тела качения в собранном состоянии.
Классификация подшипников качения группирует последние по следующим признакам: по форме тел качения, по направлению воспринимаемой нагрузки, по числу рядов тел качения, по самоустанавливаемости, по радиальным габаритным размерам, по ширине одного и того же диаметра, по степени точности.
П
4
3
о форме тел качения различают: шариковые подшипники (рис. 13.2, а). Они наиболее быстроходные; роликовые подшипники имеют большую грузоподъемность. В зависимости от формы роликов бывают: с цилиндрическими короткими роликами; цилиндрическими длинными роликами; игольчатыми роликами; бочкообразными роликами; коническими роликами; комбинированными роликами, с небольшой выпуклостью поверхности (7–30 мкм на сторону); витыми или пустотелыми роликами.По направлению воспринимаемой нагрузки изготавливают подшипники: радиальные - предназначены для восприятия радиальных сил; упорные - предназначены для восприятия осевых сил; радиально-упорные – предназначены для восприятия комбинированной (с учетом угла наклона осей тел качения α) радиальной и осевой нагрузки; упорно-радиальные – для восприятия осевых и небольших радиальных нагрузок.
По числу рядов тел качения выпускают:
однорядные подшипники (рис. 13.6);
двухрядные подшипники (рис. 13.7);
многорядные подшипники.
По признаку самоустанавливаемости бывают:
несамоустанавливающиеся подшипники;
самоустанавливающиеся подшипники.
По радиальным габаритным размерам производят подшипники качения:
сверхлегкие (две серии);
особо легкие (две серии);
легкие и легкие широкие;
средние и средние широкие;
тяжелые;
особо тяжелые.
По ширине одного и того же диаметра подшипники бывают:
узкие;
нормальные;
широкие;
особо широкие.
По степени точности ГОСТ 520–89 предусматривает пять классов точ-ности (в порядке возрастания):
нормальной точности – 0;
повышенной – 6;
высокой – 5;
прецизионной – 4;
сверхпрецизионной – 2.
Подшипники качения могут выполняться с коническими посадочными отверстиями (угол конуса 1 : 12).
Обозначение подшипников качения. Подшипники имеют условное обозначение, состоящее из цифр и букв.
Пятая или пятая и шестая справа цифры обозначают конструктивные разновидности подшипников: угол контакта шариков в радиально-упорных подшипниках; наличие защитных шайб, канавок под упорное кольцо и др.
Перед основными знаками условного обозначения через дефис могут ставиться: класс точности (нормальный класс точности (0) не указывается), радиальный зазор в подшипниках и величина момента трения (в этом случае нормальный класс точности указывается).
Справа от основного обозначения указываются дополнительные обозна-чения (буквы и цифры), учитывающие: отличия по материалам деталей, кон-струкции, покрытиям, зазорам, чистоте обработки; специальные требования по шуму (вибрации); обозначение сортов закладываемой смазки, специаль-ного отпуска деталей подшипников и др.
Материалы, применяемые для изготовления подшипников качения
Кольца и тела качения подшипников изготовляют из шарикоподшипни-ковых высокоуглеродистых хромистых сталей марок ШХ15, ШХ15СГ, ШХ20СГ, а также из цементуемых легированных сталей марок 18ХГТ и 20Х2Н4А. При требовании обеспечить немагнитность подшипников используют бериллевую бронзу.
Сепараторы большинства подшипников изготовляют из мягкой углеродистой стали методом штамповки. Для высокоскоростных подшипников применяют массивные сепараторы из латуни, антифрикционных бронз, фторопласта, текстолита.
В условиях ударных нагрузок и при высоких требованиях к бесшумности подшипников качения тела качения изготавливают из пластмасс, при этом резко снижаются требования к твердости колец.
Виды разрушений и критерии работоспособности подшипников качения
Характер и причины отказов подшипников качения:
1. Усталостное выкрашивание рабочих поверхностей колец и тел качения в виде раковин или отслаивания под действием переменных контактных напряжений. Его обычно наблюдают после длительной работы. Сопровождается повышенным шумом и вибрациями.
2. Смятие рабочих поверхностей дорожек и тел качения (образование лунок и вмятин) вследствие местных пластических деформаций под действием ударных или значительных статических нагрузок.
3. Абразивное изнашивание вследствие плохой защиты подшипника от попадания абразивных частиц.
4. Разрушение сепараторов от действия центробежных сил и воздействия на сепаратор разноразмерных тел качения.
5. Разрушение колец и тел качения из-за перекосов колец или действия больших динамических нагрузок.
Основными критериями работоспособности являются:
долговечность по динамической грузоподъемности (рассчитывают подшипники с частотой вращения кольца n ≥ 1 об/мин);
статическая грузоподъемность (рассчитывают невращающиеся и медленно вращающиеся подшипники с частотой вращения кольца n ≤ 1 об/мин).
Подшипники скольжения – применение, классификация, достоинства, недостатки. Подшипники «сухого» трения – применение, материалы. Понятие «гидростатический» и «гидродинамический» подшипник. Критерий расчета подшипников скольжения.
Подшипник скольжения — опора или направляющая механизма или машины, в которой трение происходит при скольжении сопряжённых поверхностей. Радиальный подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется рабочий элемент — вкладыш, или втулка из антифрикционного материала и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, заполненный смазочным материалом, который позволяет свободно вращаться валу. Расчёт зазора подшипника, работающего в режиме разделения поверхностей трения смазочным слоем, производится на основе гидродинамической теории смазки.
При расчёте определяются: минимальная толщина смазочного слоя (измеряемая в мкм), давления в смазочном слое, температура и расход смазочных материалов. В зависимости от конструкции, окружной скорости цапфы, условий эксплуатации трение скольжения бывает сухим, граничным, жидкостным и газодинамическим. Однако даже подшипники с жидкостным трением при пуске проходят этап с граничным трением.
Смазка является одним из основных условий надёжной работы подшипника и обеспечивает: низкое трение, разделение подвижных частей, теплоотвод, защиту от вредного воздействия окружающей среды и может быть; жидкой (минеральные и синтетические масла, вода для не металлических подшипников), пластичной (на основе литиевого мыла и кальция сульфоната и др.), твёрдой (графит, дисульфид молибдена и др.) и газообразной (различные инертные газы, азот и др.). Наилучшие эксплуатационные свойства демонстрируют пористые самосмазывающиеся подшипники, изготовленные методом порошковой металлургии. При работе пористый самосмазывающийся подшипник, пропитанный маслом, нагревается и выделяет смазку из пор на рабочую скользящую поверхность, а в состоянии покоя остывает и впитывает смазку обратно в поры.
Антифрикционные материалы подшипников изготавливают из твёрдых сплавов (карбид вольфрама или карбид хрома методом порошковой металлургии либо высокоскоростным газопламенным напылением), баббитов и бронз, полимерных материалов, керамики, твёрдых пород дерева (железное дерево).