
- •§4.3. Самостійна робота
- •1. Перелік компетентностей четвертого змістового модуля
- •2. Питання для самоконтролю четвертого змістового модуля:
- •3. Банк завдань до четвертого змістового модуля.
- •§5.1. Лекційний матеріал Оптика рухомих середовищ
- •1. Визначення швидкості світла за спостереженнями затемнень супутників Юпітера.
- •Лабораторні методи визначення швидкості світла
- •1. Метод Фізо (1849 р.) або метод зубчастого колеса
- •Метод дзеркала, що обертається (ж.Фуко, 1868 р.)
- •Метод призми, що обертається (а.Майкельсон, 1881 р.)
- •Фазова та групова швидкість світла
- •Ефект Вавілова-Черенкова
- •Дослід Майкельсона і виникнення теорії відносності
- •Ефект Допплера
- •Аберація світла
- •§ 5.2. Практичні заняття Практичне заняття № 15. Тема: Оптика рухомих середовищ
- •Основні формули:
- •Приклади розв’язування задач
- •Аналіз та розв’язок:
- •Задачі для самостійного розв'язування та домашнього завдання:
- •§5.3. Самостійна робота
- •1. Перелік компетентностей п’ятого змістового модуля
- •2. Питання для самоконтролю п’ятого змістового модуля:
- •3. Банк завдань до п’ятого змістового модуля
- •Розділ vі. Змістовий модуль VI
- •§6.1. Лекційний матеріал Поняття про нелінійну оптику
- •1.Коротка історія розвитку нелінійної оптики
- •Нелінійні явища, які виникають при взаємодії електричного поля хвилі з речовиною
- •Параметрична генерація світла
- •Багатофотонний ефект
- •Просвітління й затемнення середовища
- •Ефект затемнення середовища
- •Висновок
- •Порядок виконання роботи Вправа 1. Визначення показника заломлення скла за допомогою плоско-паралельної пластинки.
- •Вправа 2. Визначення показника заломлення скла за допомогою мікроскопа.
- •Контрольні запитання
- •Лабораторна робота №2 визначення фокусних відстаней тонких лінз
- •Теоретичні відомості
- •Порядок виконання роботи Вправа 1. Визначення фокусної відстані тонкої додатної лінзи.
- •1. Спосіб.
- •2. Спосіб.
- •3. Спосіб.
- •4. Спосіб.
- •Вправа 2. Визначення фокусної відстані тонкої розсіювальної лінзи.
- •Контрольні запитання
- •Лабораторна робота № 3 моделювання оптичних систем
- •Теоретичні відомості
- •Прилади для спостереження малих об’єктив
- •Прилади для спостереження віддалених об’єктів
- •Порядок виконання роботи Вправа 1. Моделювання коліматора.
- •Вправа 2. Моделювання труби Кеплера.
- •Вправа 3. Моделювання зорової труби Галілея.
- •Вправа 4. Моделювання мікроскопа.
- •Контрольні запитання
- •Лабораторна робота № 4 визначення довжини хвилі лазерного випромінювання методом інтерференції світла у біпризмі френеля
- •Опис методу та установки
- •Порядок виконання роботи
- •Контрольні запитання.
- •Лабораторна робота №5 визначення радіуса кривизни лінзи за допомогою кілець ньютона
- •Теоретичні відомості
- •Порядок виконання роботи Вправа 1. Вимірювання радіуса кілець Ньютона в поділках окулярної шкали.
- •Вправа 2. Визначення ціни поділки окулярної шкали.
- •Вправа 3. Обчислення радіуса кривизни лінзи.
- •Контрольні запитання
- •Опис методу та установки
- •Розрахунок різниці ходу інтерферуючих променів
- •Порядок виконання роботи
- •Контрольні запитання
- •Лабораторна робота № 7 вивчення дифракції фраунгофера на щілині
- •Опис метода та установки
- •Порядок виконання роботи
- •Лабораторна робота № 8 вивчення явища дифракції світла за допомогою дифракційноі решітки
- •Опис методу та установки
- •Порядок виконання роботи
- •Контрольні запитання
- •Лабораторна робота № 9 вивчення явища поляризації
- •Порядок виконання роботи
- •Контрольні запитання
- •Лабораторна робота № 10 визначення питомого кута повертання кварцу та концентрації цукру в розчині сахариметром
- •Короткі теоретичні відомості
- •Виведення робочої формули:
- •Порядок виконання роботи
- •Контрольні запитання.
- •Лабораторна робота № 11 вивчення явища дисперсії світла. Визначення дисперсії скляної призми гоніометром
- •Опис методу та установки
- •Відлік за мікроскопом
- •П Мал. 3. Орядок виконання роботи
- •Контрольні запитання
- •Література до лабораторних робіт
- •Список літератури до теоретичного матеріалу Основна
- •Додаткова
Прилади для спостереження віддалених об’єктів
Зорові труби – це оптичні системи, призначені для розглядання віддалених предметів. Зорові труби збільшують кут зору, внаслідок чого збільшується і зображення на сітківці ока. Тому для зорових труб важливе кутове збільшення. Найбільш поширені зорові труби Кеплера і Галілея.
Т
руба
Кеплера у найпростішому випадку
складається з двох збиральних лінз:
довгофокусного об’єктива і короткофокусного
окуляра. Лінзи розташовані так, що задній
фокус об’єктива співпадає з переднім
фокусом окуляра (рис. 3).
Внаслідок цього паралельний пучок променів, що падає на об’єктив, залишається паралельним після виходу із окуляра. Такі оптичні системи називаються телескопічними.
Телескопічна система не збирає промені і не розсіює, тобто фокусна відстань системи в цілому дорівнює нескінченності, а оптична сила дорівнює нулю. Тому такі системи ще називаються афокальні.
В
ід
дуже віддалених об’єктів поширюється
практично паралельний пучок променів.
У цьому випадку для розрахунку збільшення
труби достатньо одного променя, який
проходить через оптичний центр об’єктива
(рис. 4).
Об’єктив труби дає у фокальній площині дійсне, зменшене, перевернуте зображення нескінченно віддаленого предмета. Це зображення розглядається через окуляр як через лупу.
Кутове збільшення будь-якого оптичного приладу дорівнює
Г З рис. 4 випливає, що
|
|
Отже,
Г
|
|
Відношення фокусних відстаней можна замінити відношенням діаметрів вхідного та вихідного пучків світла
Г
(2а)
Труби Кеплера застосовують для спостережень земних і небесних об’єктів. Недоліком труби для спостереження земних об’єктів є то, що вона дає перевернуте зображення. Для повороту зображення використовують призматичні або лінзові оборотні системи. Наприклад, бінокль складається з двох труб Кеплера, в кожній з яких використовують дві оборотні призми. Це дає можливість отримати пряме зображення і одночасно зменшити довжину труби. Зорові труби для земних спостережень мають невеликі збільшення 2х-12х. Неоднорідності атмосфери спотворюють зображення, тому великої інформації про об’єкт спостережень великі збільшення не дають. Для астрономічних спостережень використовують труби Кеплера без оборотних систем (телескоп-рефрактор). Вони мають збільшення від 7х-8х до 500х.
З
орова
труба Галілея складається з довгофокусної
збиральної лінзи – об’єктива, і
короткофокусної розсіювальної лінзи
– окуляра. Оптична схема труби Галілея
зображена на рис. 5. Це також афокальна
система. В трубі, наведеній на
нескінченність, фокуси об’єктива і
окуляра співпадають (точка F).
Уявне пряме зображення спостерігач
бачить під більшим кутом зору, тому воно
здається збільшеним. Як і у випадку
труби Кеплера, кутове збільшення також
дорівнює відношенню фокусних відстаней
Г=f1/f2
або відношенню діаметрів світлових
пучків Г=D/d.
Труба Галілея дещо коротша за трубу Кеплера. Вона дає пряме зображення. Недоліком труби є відсутність проміжного зображення, куди можна було б помістити перехрестя ниток або шкалу, що потрібно для деяких оптичних приладів (теодоліт), а також менше поле зору і неможливість отримання великих збільшень. Застосовується вона як невеличкі туристичні зорові труби або як театральний бінокль (дві скріплені між собою труби Галілея).