
- •№1 Общие сведения о металлах.
- •№2 Материалы для получения чугуна.
- •№3 Устройство доменной печи.
- •№4 Продукты доменной плавки.
- •№5 Сущность передела чугуна в сталь.
- •№6 Мартеновский способ получения стали.
- •№7 Электроплавка стали.
- •№8 Разливка стали.
- •№9 Строение металлов.
- •№10 Строение реальных кристаллов.
- •№11 Свойства металлов.
- •№12 Испытания на растяжение и ударную вязкость.
- •№13 Твердость металлов.
- •№14 Технологические испытания металлов.
- •№16 Понятие о металлическом сплаве.
- •№17 Диаграмма состояния Cu-Ni.
- •№18 Диаграмма состояния Pb-Sb.
- •№19 Диаграмма состояния Fe-Fe3c.
- •4) На уровне точки с лежит прямая ef эвтектического (ледебуритного) превращения, на уровне точки s — прямая рк эвтектоидного (перлитного) превращения.
- •№21 Построение кривых охлаждения.
- •№22 Сущность термической обрабтки.
- •№23 Отжиг 1 рода.
- •№24 Отжиг 2 рода.
- •№25 Нормализация сталей
- •№26 Закалка сталей
- •№27 Отпуск закаленных сталей
- •№28 Химико-термическая обработка
- •№29 Цементация
- •№30 Азотирование
- •№31 Цианирование.
- •№32 Диффузионная металлизация.
- •№33 Углеродистые стали
- •№34 Влияние c, Mn…. На свойства сталей
- •№35 Конструкционные стали.
- •№39 Легирование сталей
- •№40 Маркировка легированной стали.
- •№41 Легированные стали общего назначения.
- •№42 Шарикоподшипниковые стали.
- •№43 Высокопрочные и износоустойчивые стали
- •№44 Низколегированная сталь для режущего инструмента
- •№45 Быстрорежущая сталь
- •№46 Металлокерамические твердые сплавы
- •№47 Минералокерамические твердые сплавы.
- •№48 Классификация чугунов
- •№49 Белый и серый чугуны.
- •№50 Высокопрочный чугун.
- •№51 Медь
- •№52 Медные сплавы.
- •№53 Алюминиевые сплавы
- •№54 Сплавы на основе магния
- •№55 Антифрикционные сплавы.
- •№56 Коррозия металлов.
- •№57 Пластические массы
- •№58 Газонаполненные пластмассы.
- •№59 Резина
- •№60 Древесные материалы
- •№61 Общие сведения о композиционных материалах. Их классификация и
- •Свойства
- •№62 Композиционные материалы.
- •№63 Сущность порошковой металлургии. Формование порошков.
- •№64 Спекание порошковых материалов
- •№65 Аморфные металлы: получение, свойство, применение
- •№68 Сущность литейного производства, достоинства и недостатки.
- •№69 Формовочные и стержневые смеси
- •№70 Изготовление форм
- •№71 Литейные сплавы.
- •№74 Специальные способы литья.
- •№75 Теоретические основы обработки металлов давлением. Способы обработки давлением. Нагрев металла обработкой давлением.
- •№76 Прокатка: сущность, виды, применяемое оборудование
- •№77 Прессование и волочение
- •№78 Свободная ковка: сущность, достоинства и недостатки.
- •№79 Штамповка: сущность, достоинства по сравнению с ковкой
- •№80 Общие сведения о сварке. Способы сварки.
- •№81 Строение и свойства электрической сварочной дуги.
- •№82 Сварочная проволока и электроды
- •№83 Технология ручной дуговой сварки.
- •№84 Электрошлаковая сварка
- •№85 Дуговая сварка в среде защитных газов
- •№ 86Контактная сварка
- •№87 Сущность газовой сварки Горючие газы Ацетиленокислородное пламя
- •№88 Оборудование поста газовой сварки Технология газовой сварки и плазменной резки
- •№89 Специальные способы сварки. Контроль качества сварных швов.
- •№90 Пайка металлов
№51 Медь
Медь по применению в промышленности занимает одно из первых мест среди цветных металлов. Высокие пластичность, электро- и теплопроводность, повышенная коррозионная стойкость — ценнейшие свойства меди.
Вследствие высокой электропроводности медь — лучший металл для электромашиностроения, изготовления кабелей и проводов для передачи электроэнергии. Медь является основой в сплавах, широко применяемых во всех отраслях машино- и приборостроения.
Медные руды делятся на две основные группы: сульфидные, в которых медь связана с серой в составе сульфидных минералов, и окисленные, где медь входит в виде оксидов. Встречается самородная медь с массовым содержанием Си до 99,9 %, однако промышленные руды с самородной медью очень редки (лишь около 5 % всех мировых месторождений) и значение их невелико.
На сульфидные руды приходится около 80 % всех мировых запасов меди. Наиболее распространен в сульфидных рудах халькопирит (медный колчедан) CuFeS2. За ним следуют халькозин (медный блеск) Cu2S, борнит Cu2FeS3 и реже ковеллин CuS. Из окисленных руд наиболее распространен малахит CuC03-Cu(Gli)2.
Среднее массовое содержание меди в промышленных рудах составляет 1—2 %, минимальное —0,3 %; руды, содержащие 3 % меди и более, считаются богатыми. В состав пустой породы медных руд входят кварц, борит, кальцит и различные алюмосиликаты.
№52 Медные сплавы.
В технике используют сплавы меди с цинком, оловом, алюминием, бериллием, кремнием, марганцем, никелем, свинцом. Легирование меди обеспечивает повышение ее механических, технологических и антифрикционных свойств.
Сплавы меди с цинком называют латунями и томпаками, все другие ее сплавы, за исключением сплавов с никелем, называют бронзами.
По ГОСТу латуни обозначают буквой Л и цифрой, указывающей массовое содержание меди в сплаве в процентах. Латуни, содержащие до 10 % цинка, называют томпаком, свыше 10 до 20 % — полутомпаком. Обозначение легирующих элементов следующее: Ж — железо, Мц —марганец, Н —никель, О —олово, К —кремний, С —свинец; массовое содержание легирующего элемента указывается цифрами.
Оловянные бронзы обладают высокой коррозионной стойкостью, жидкотекучестью и повышенными антифрикционными свойствами. Из них изготовляют главным образом отливки.
По ГОСТу оловянные бронзы маркируются буквами БрО и цифрой, показывающей массовое содержание олова; последующие буквы и цифры показывают наличие и массовое содержание в бронзе дополнительных элементов, для обозначения которых применяют те же буквы, что и при маркировке специальных латуней. Кроме того, цинк обозначают буквой Ц, а фосфор — Ф.
№53 Алюминиевые сплавы
Алюминиевые сплавы. Для алюминиевых сплавов характерна малая плотность при удельной прочности, которая для некоторых марок близка к прочности высокопрочных сталей. Из сплавов на основе алюминия получили распространение сплавы с медью, марганцем, кремнием. Для повышения прочности, коррозионной стойкости, жаропрочности алюминиевых сплавов используют литий, никель, титан, бериллий.
Алюминиевые литейные сплавы содержат чаще всего кремний, медь и магний. Сплавы алюминия с кремнием, называемые также силуминами.
Силумины жидкотекучие, имеют малую усадку, их состав близок к эвтектическому (марки АЛ2, АЛ4). Упрочнение их достигается модифицированием, состоящим в добавке расплавленному силумину модификаторов—натрия или смеси фтористых солей натрия и калия. Небольшая (0,01 %) присадка натрия резко меняет структуру силумина: зерна становятся мелкими, излом бархатистым на вид.