
- •Билет 1
- •1. Основы ос Unix, возможности, стандартизация (1) – 4
- •Отличительные черты ос unix
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Последовательность действий по преобразованию адреса в защищенном режиме
- •Билет 2
- •1. Понятие системного вызова в ос unix. Обработка ошибок (2) – 9
- •Обработка ошибок
- •Void perror (s)
- •Void perror (const char *s);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Особенности современных операционных систем (2, 28) – 122
- •Концепция ос на основе микроядра
- •Многопоточность
- •Cимметричная многопроцессорность.
- •Распределенные ос
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Концепция слоистой операционной системы и системы на основе микроядра.
- •Билет 4
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов (4, 18) – 23
- •Атрибуты файла
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •Int chown (const char *path, uid_t owner, gid_t group);
- •Int lchown (const char *path, uid_t owner, gid_t group);
- •Int fchown (int fd, uid_t owner, gid_t group): ,
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 5
- •1. Неименованные каналы в ос unix (5) – 77
- •Int pipe(int fd[2]);
- •2. Взаимодействие процессов. Задача взаимного исключения. Алгоритм Деккера (5) – 147
- •3. Понятие процесса, модели процессов (5) – 132
- •Билет 6
- •Метаданные файлов в ос unix (7) – 36
- •Int stat(const char *path, struct stat *buf);
- •Int fstаt(int fd, struct stat *buf);
- •Int lstat(const char *path, struct stat *buf);
- •2.Взаимодействие последовательных процессов. Задача взаимного исключения. Вариант2.
- •3. Описание процесса, таблица процесса (6) – 136
- •Билет 7
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 8
- •1. Атрибуты процессов в unix (8) – 66
- •2.Применение общего семафора для решения задачи "производитель-потребитель" с неограниченным буфером.
- •3. Концепция потока, как составной части процесса (8) – 139
- •Билет 9
- •1. Разработка программ в ос unix. Обработка ошибок, переменные окружения (9)
- •Int putenv(const char *string);
- •Int setenv(const char * name, const char * value, int ov );
- •Int unsetenv(const char * name);
- •Обработка ошибок
- •Void perror (const char *s);
- •2. Применение двоичных семафоров для решения задачи «производитель» - «потребитель» (буфер неограниченный) (9, 21)
- •3. Концепция виртуализации (9, 17) –
- •Билет 10
- •1. Файлы, отображаемые в память (10) – 33
- •Void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Подсистема управления памятью, требования, предъявляемые к ней (10)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 12
- •1. Сигналы в ос unix. Их назначение и обработка (12) – 70
- •Void (*sa_handler)(int);
- •Void (*sa_sigaction)(int, siginfo_t *, void *);
- •Int sa_flags;
- •Int pause (void);
- •2. Взаимодействие процессов через переменные состояния. Пример приоритетного правила (12) – 157
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 13
- •1. Функции для работы с сигналами (13) – 70
- •Void (*sa_handler)(int);
- •Void (*sa_sigaction)(int, siginfo_t *, void *);
- •Int sa_flags;
- •Int pause (void);
- •Наборы сигналов
- •Блокировка сигналов
- •Int sigprocmask(int how, const sigset_t *set, sigset_t, *oldset);
- •Int sigaсtion(int signo, const struct sigactoin *act, struct sigaction *oldact);
- •Void my_handler(int signo)
- •Void my_handler(int signo, siginfo_t *si, void ucontext )
- •2. Проблема тупиков. Алгоритм банкира (13)
- •3. Задача замещения при управлении виртуальной памятью, часовой алгоритм.
- •Билет 14
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •2. Задача взаимного исключения. Алгоритм Петерсона (14, 25) – 148
- •3.Распределение памяти. Система двойников.
- •Система двойников при распределении памяти.
- •Билет 15
- •1. Файловая система в ос unix ext2 (15) – 51
- •Организация файловой системы ext2
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 16
- •1.Каналы в ос unix (16) – 80
- •Int pipe(int fd[2]);
- •Int mkfifo(const char *pathname,mode_t mode);
- •Размер канала и взоимодействие процессов при передаче данных
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Организация защиты в процессорах ia32
- •Билет 17
- •1. Процессы в ос unix, системные вызовы wait, exit (17) – 60, 63
- •Void _exit(int exit_code);
- •Void exit(int status);
- •Int atexit(void(*func)(void));
- •2. Монитороподобные средства синхронизации для решения задачи взаимного исключения (17) – 160
- •Механизм типа «условная критическая область»
- •3. Концепция виртуализации
- •Билет 18
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов
- •Атрибуты файла
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •Int chown (const char *path, uid_t owner, gid_t group);
- •Int lchown (const char *path, uid_t owner, gid_t group);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Схемы распределения памяти
- •Билет 19
- •1. Взаимодействие процессов в ос unix, очереди сообщений (19) – 83
- •Int msgget (key_t key, int permflags);
- •Int msgsnd(int mqid, const void *message, size_t size, int flags);
- •Int msgrcv(int mqid, void *message, size_t size, long msg_type, int flags);
- •Int msgctl(int mqid, int command, struct msqid_ds *msq_stat);
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 20
- •1 Взаимодействие процессов в ос unix с применением семафоров (20) – 93
- •V(sem) или signal (sem)
- •Int semget(key_t key, int nsems, int permflags);
- •Int semctl (int semid, int sem_num, int command, union semun ctl_arg);
- •Int semop(int semid, struct sembuf *op_array, size_t num_ops);
- •2. Применение общего семафора для решения задачи "производитель-потребитель" с неограниченным буфером.
- •3. Механизмы поддержки многозадачности в процессорах ia32 (20)
- •Билет 21
- •1. Работа с файлами в ос unix. Системные вызовы (21) – 25
- •Int open(const char *name, int flags);
- •Int open(const char *name, int flags, mode_l mode);
- •2. Применение двоичных семафоров для решения задачи "производитель-потребитель" (буфер неограниченный).
- •3. Страничная организация памяти в процессоре ia32
- •Билет 22
- •1. Взаимодействие процессов в ос unix. Разделяемая память (22) – 100
- •Int shmget(key_t key, size_t size, int permflags);
- •Void *shmat(int shmid, const void *daddr, int shmflags);
- •Int shmctl(int shmid, int command, struct shmid ds *shm_stat);
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Организация защиты в процессорах ia32
- •Билет 23
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Задача замещения при управлению виртуальной памятью, часовой алгоритм.
- •Билет 24
- •1. Понятие потока в ос unix. Создание потока, завершение потока (24) – 106
- •Int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,
- •Void*(*start_routine)(void *), void *arg);
- •Функция для завершения нити (потока) исполнения
- •Int pthread_join(thread_t tid, void **status);
- •Int pthread_detach(thread_t tid);
- •Досрочное завершение потока
- •Int pthread_cancel(pthread_t thread);
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20, 24) - 152
- •3. Схемы распределения памяти (18, 24)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Задача взаимного исключения. Алгоритм Петерсона
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 26
- •1. Поток в ос unix. Синхронизация потоков, получение информации о потоке.
- •Int pthread_key_create(pthread_key_t *key, void(*destructor)(void *));
- •Int pthread_setschedparam(pthread_t tid, int policy,
- •Int pthread_getschedparam(pthread_t tid, int policy, struct schedparam *param);
- •Int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 27
- •1. Применение мьютексов при взаимодействии потоков в ос unix.
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •1. Применение блокировок чтения-записи при взаимодействии потоков в ос unix.
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Особенности современных операционных систем (2, 28) – 122
- •Концепция ос на основе микроядра
- •Многопоточность
- •Cимметричная многопроцессорность.
- •Распределенные ос
Билет 24
1. Понятие потока в ос unix. Создание потока, завершение потока (24) – 106
С помощью процессов можно организовать параллельное выполнение программ. Для этого процессы размножаются вызовами fork(), а затем между ними организуется взаимодействие с помощью средств межпроцессного взаимодействия. Для организации параллельного выполнения и взаимодействия процессов можно использовать механизм многопоточности. Основной единицей здесь является поток. Поток представляет собой облегченную версию процесса. Основные характеристики процесса следующие:
1. Процесс располагает определенными ресурсами. Он размещен в некотором виртуальном адресном пространстве, содержащем образ этого процесса. Кроме того, процесс управляет другими ресурсами (файлы, устройства ввода / вывода и т.д.).
2. Процесс подвержен диспетчеризации. Он определяет порядок выполнения одной или нескольких программ, при этом выполнение может перекрываться другими процессами. Каждый процесс имеет состояние выполнения и приоритет диспетчеризации.
Если рассматривать эти характеристики независимо друг от друга (как это принято в современной теории ОС), то:
1) владельцу ресурса, обычно называемому процессом или задачей, присущи:
- виртуальное адресное пространство;
- индивидуальный доступ к процессору, другим процессам, файлам, и ресурсам ввода – вывода;
2) модулю для диспетчеризации, обычно называемому потоком или облегченным процессом, присущи:
- состояние выполнения (активное, готовность и т.д.);
- сохранение контекста потока в неактивном состоянии;
- стек выполнения и некоторая статическая память для локальных переменных;
- доступ к пространству памяти и ресурсам своего процесса.
Все потоки процесса разделяют общие ресурсы. Изменения, вызванные одним потоком, становятся немедленно доступны другим.
При корректной реализации потоки имеют определенные преимущества перед процессами. Им требуется:
- меньше времени для создания нового потока, поскольку создаваемый поток использует адресное пространство текущего процесса;
- меньше времени для завершения потока;
- меньше времени для переключения между двумя потоками в пределах процесса;
- меньше коммуникационных расходов, поскольку потоки разделяют все ресурсы, и в частности адресное пространство. Данные, продуцируемые одним из потоков, немедленно становятся доступными всем другим потокам.
Так как ОС UNIX является многозадачной системой, то в ходе работы несколько процессов могут конкурировать между собой за доступ к различным ресурсам. Для справедливого распределения ресурсов (память, дисковое пространство) каждому из процессов устанавливается индивидуальный набор ограничений.
Преимущества многопоточности
Если операционная система поддерживает концепции потоков в рамках одного процесса, она называется многопоточной. Многопоточные приложения имеют ряд преимуществ:
1. Улучшенная реакция приложения - любая программа, содержащая много не зависящих друг от друга действий, может быть перепроектирована так, чтобы каждое действие выполнялось в отдельном потоке. Например, пользователь многопоточного интерфейса не должен ждать завершения одной задачи, чтобы начать выполнение другой.
2. Более эффективное использование мультипроцессирования - как правило, приложения, реализующие параллелизм через потоки, не должны учитывать число доступных процессоров. Производительность приложения равномерно увеличивается при наличии дополнительных процессоров. Численные алгоритмы и приложения с высокой степенью параллелизма, например перемножение матриц, могут выполняться намного быстрее.
3. Улучшенная структура программы - некоторые программы более эффективно представляются в виде нескольких независимых или полуавтономных единиц, чем в виде единой монолитной программы. Многопоточные программы легче адаптировать к изменениям требований пользователя.
4. Эффективное использование ресурсов системы - программы, использующие два или более процессов, которые имеют доступ к общим данным через разделяемую память, содержат более одного потока управления. При этом каждый процесс имеет полное адресное пространство и состояние в операционной системе. Стоимость создания и поддержания большого количества служебной информации делает каждый процесс более затратным, чем поток. Кроме того, разделение работы между процессами может потребовать от программиста значительных усилий, чтобы обеспечить связь между потоками в различных процессах или синхронизировать их действия.
Уровни потоков
Существует две основных категории потоков с точки зрения реализации:
- пользовательские потоки, которые реализуются через специальные библиотеки потоков;
- потоки уровня ядра, которые реализуются через системные вызовы.
Каждый уровень имеет свои достоинства и недостатки. Некоторые операционные системы позволяют реализовать потоки обоих уровней.
Пользовательские потоки.
При использовании этого уровня ядро не знает о существовании потоков - все управление потоками реализуется приложением с помощью специальных библиотек. Переключение потоков не требует привилегий режима ядра, а планирование полностью зависит от приложения. При этом ядро управляет деятельностью процесса. Если поток вызывает системную функцию, то будет блокирован весь процесс, но для поточной библиотеки этот поток будет находиться в активном состоянии. Здесь состояние потока не зависит от состояния процесса.
Преимущества пользовательских потоков в следующем:
- переключение потоков не требует участия ядра - нет переключения из режима задачи в режим ядра;
- планирование может определяться приложением - при этом выбирается наилучший алгоритм;
- пользовательские потоки могут применяться в любой ОС - необходимо лишь наличие совместимой библиотеки потоков.
Недостатки пользовательских потоков:
- большинство системных вызовов является блокирующими и ядро блокирует процессы - включая все потоки в пределах процесса;
- ядро может направлять на процессоры только процессы - два потока в пределах одного и того же процесса не могут выполняться одновременно на двух разных процессорах.
Потоки уровня ядра
На этом уровне все управление потоком выполняется ядром. Используется программный интерфейс приложения (системные вызовы) для работы с потоками уровня ядра. Ядро поддерживает информацию о контексте процесса и потоков; переключение потоков требует выполнения дисциплины планирования ядра на уровне этих потоков.
Преимущества потоков уровня ядра:
- ядро может одновременно планировать выполнение нескольких потоков одного процесса на нескольких процессорах, блокирование выполняется на уровне потока;
- процедуры ядра могут быть многопоточными.
Недостатки:
- переключение потоков в пределах одного процесса требует участия ядра.
Основной библиотекой для реализации пользовательских потоков является библиотека потоков POSIX, которая называется pthreads.
Создание потока
Функция pthread_create() позволяет добавить новый поток управления к текущему процессу. Прототип функции: