
- •Билет 1
- •1. Основы ос Unix, возможности, стандартизация (1) – 4
- •Отличительные черты ос unix
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Последовательность действий по преобразованию адреса в защищенном режиме
- •Билет 2
- •1. Понятие системного вызова в ос unix. Обработка ошибок (2) – 9
- •Обработка ошибок
- •Void perror (s)
- •Void perror (const char *s);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Особенности современных операционных систем (2, 28) – 122
- •Концепция ос на основе микроядра
- •Многопоточность
- •Cимметричная многопроцессорность.
- •Распределенные ос
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Концепция слоистой операционной системы и системы на основе микроядра.
- •Билет 4
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов (4, 18) – 23
- •Атрибуты файла
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •Int chown (const char *path, uid_t owner, gid_t group);
- •Int lchown (const char *path, uid_t owner, gid_t group);
- •Int fchown (int fd, uid_t owner, gid_t group): ,
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 5
- •1. Неименованные каналы в ос unix (5) – 77
- •Int pipe(int fd[2]);
- •2. Взаимодействие процессов. Задача взаимного исключения. Алгоритм Деккера (5) – 147
- •3. Понятие процесса, модели процессов (5) – 132
- •Билет 6
- •Метаданные файлов в ос unix (7) – 36
- •Int stat(const char *path, struct stat *buf);
- •Int fstаt(int fd, struct stat *buf);
- •Int lstat(const char *path, struct stat *buf);
- •2.Взаимодействие последовательных процессов. Задача взаимного исключения. Вариант2.
- •3. Описание процесса, таблица процесса (6) – 136
- •Билет 7
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 8
- •1. Атрибуты процессов в unix (8) – 66
- •2.Применение общего семафора для решения задачи "производитель-потребитель" с неограниченным буфером.
- •3. Концепция потока, как составной части процесса (8) – 139
- •Билет 9
- •1. Разработка программ в ос unix. Обработка ошибок, переменные окружения (9)
- •Int putenv(const char *string);
- •Int setenv(const char * name, const char * value, int ov );
- •Int unsetenv(const char * name);
- •Обработка ошибок
- •Void perror (const char *s);
- •2. Применение двоичных семафоров для решения задачи «производитель» - «потребитель» (буфер неограниченный) (9, 21)
- •3. Концепция виртуализации (9, 17) –
- •Билет 10
- •1. Файлы, отображаемые в память (10) – 33
- •Void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Подсистема управления памятью, требования, предъявляемые к ней (10)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 12
- •1. Сигналы в ос unix. Их назначение и обработка (12) – 70
- •Void (*sa_handler)(int);
- •Void (*sa_sigaction)(int, siginfo_t *, void *);
- •Int sa_flags;
- •Int pause (void);
- •2. Взаимодействие процессов через переменные состояния. Пример приоритетного правила (12) – 157
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 13
- •1. Функции для работы с сигналами (13) – 70
- •Void (*sa_handler)(int);
- •Void (*sa_sigaction)(int, siginfo_t *, void *);
- •Int sa_flags;
- •Int pause (void);
- •Наборы сигналов
- •Блокировка сигналов
- •Int sigprocmask(int how, const sigset_t *set, sigset_t, *oldset);
- •Int sigaсtion(int signo, const struct sigactoin *act, struct sigaction *oldact);
- •Void my_handler(int signo)
- •Void my_handler(int signo, siginfo_t *si, void ucontext )
- •2. Проблема тупиков. Алгоритм банкира (13)
- •3. Задача замещения при управлении виртуальной памятью, часовой алгоритм.
- •Билет 14
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •2. Задача взаимного исключения. Алгоритм Петерсона (14, 25) – 148
- •3.Распределение памяти. Система двойников.
- •Система двойников при распределении памяти.
- •Билет 15
- •1. Файловая система в ос unix ext2 (15) – 51
- •Организация файловой системы ext2
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 16
- •1.Каналы в ос unix (16) – 80
- •Int pipe(int fd[2]);
- •Int mkfifo(const char *pathname,mode_t mode);
- •Размер канала и взоимодействие процессов при передаче данных
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Организация защиты в процессорах ia32
- •Билет 17
- •1. Процессы в ос unix, системные вызовы wait, exit (17) – 60, 63
- •Void _exit(int exit_code);
- •Void exit(int status);
- •Int atexit(void(*func)(void));
- •2. Монитороподобные средства синхронизации для решения задачи взаимного исключения (17) – 160
- •Механизм типа «условная критическая область»
- •3. Концепция виртуализации
- •Билет 18
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов
- •Атрибуты файла
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •Int chown (const char *path, uid_t owner, gid_t group);
- •Int lchown (const char *path, uid_t owner, gid_t group);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Схемы распределения памяти
- •Билет 19
- •1. Взаимодействие процессов в ос unix, очереди сообщений (19) – 83
- •Int msgget (key_t key, int permflags);
- •Int msgsnd(int mqid, const void *message, size_t size, int flags);
- •Int msgrcv(int mqid, void *message, size_t size, long msg_type, int flags);
- •Int msgctl(int mqid, int command, struct msqid_ds *msq_stat);
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 20
- •1 Взаимодействие процессов в ос unix с применением семафоров (20) – 93
- •V(sem) или signal (sem)
- •Int semget(key_t key, int nsems, int permflags);
- •Int semctl (int semid, int sem_num, int command, union semun ctl_arg);
- •Int semop(int semid, struct sembuf *op_array, size_t num_ops);
- •2. Применение общего семафора для решения задачи "производитель-потребитель" с неограниченным буфером.
- •3. Механизмы поддержки многозадачности в процессорах ia32 (20)
- •Билет 21
- •1. Работа с файлами в ос unix. Системные вызовы (21) – 25
- •Int open(const char *name, int flags);
- •Int open(const char *name, int flags, mode_l mode);
- •2. Применение двоичных семафоров для решения задачи "производитель-потребитель" (буфер неограниченный).
- •3. Страничная организация памяти в процессоре ia32
- •Билет 22
- •1. Взаимодействие процессов в ос unix. Разделяемая память (22) – 100
- •Int shmget(key_t key, size_t size, int permflags);
- •Void *shmat(int shmid, const void *daddr, int shmflags);
- •Int shmctl(int shmid, int command, struct shmid ds *shm_stat);
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Организация защиты в процессорах ia32
- •Билет 23
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Задача замещения при управлению виртуальной памятью, часовой алгоритм.
- •Билет 24
- •1. Понятие потока в ос unix. Создание потока, завершение потока (24) – 106
- •Int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,
- •Void*(*start_routine)(void *), void *arg);
- •Функция для завершения нити (потока) исполнения
- •Int pthread_join(thread_t tid, void **status);
- •Int pthread_detach(thread_t tid);
- •Досрочное завершение потока
- •Int pthread_cancel(pthread_t thread);
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20, 24) - 152
- •3. Схемы распределения памяти (18, 24)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Задача взаимного исключения. Алгоритм Петерсона
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 26
- •1. Поток в ос unix. Синхронизация потоков, получение информации о потоке.
- •Int pthread_key_create(pthread_key_t *key, void(*destructor)(void *));
- •Int pthread_setschedparam(pthread_t tid, int policy,
- •Int pthread_getschedparam(pthread_t tid, int policy, struct schedparam *param);
- •Int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 27
- •1. Применение мьютексов при взаимодействии потоков в ос unix.
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •1. Применение блокировок чтения-записи при взаимодействии потоков в ос unix.
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Особенности современных операционных систем (2, 28) – 122
- •Концепция ос на основе микроядра
- •Многопоточность
- •Cимметричная многопроцессорность.
- •Распределенные ос
3. Организация защиты в процессорах ia32
Процессор поддерживает 4 механизма защиты:
1)Защита по размеру сегмента – предотвращает выход за пределы сегмента;
2)Привилегированные команды – есть группа команд, которые могут выполняться только на нулевом уровне привилегий. Команды, связанные с обращением к системным регистрам. Есть группа IOPL команд: команды работают с портами ввода/вывода и команды установки флага прерывания. Они выполняются только когда уровень привилегий больший или равен IOPL;
3)Защита по привилегиям – есть понятие CPL – текущий уровень привилегий процессора (Current Privilege Level). Это уровень, на котором работает процесс в данный момент. Значение в младших битах регистра CS. При обращении к данным или другим системным объектам сравнивает значение текущего уровня привилегий с уровнем привилегий дескриптора (DPL). По результату сравнения процессор выполняет/не выполняет действие. Более того, при обращении к памяти max(CPL,RPL)<=DPL;
4)Проверка на возможность выполнения действий – процессор проверяет возможность действий. Например, программа выполняет запись в сегмент данных, а сегмент только для чтения. Или попытка выполнить команду по отношению к невыполняемому сегменту.
Важным механизмом защиты является то, что передача управления возможна только на текущем уровне привилегий (команды FAR CALL и FAR IMP).
Но системные программы должны передавать пользователю программные права на управление.
Когда пользовательские программы взаимодействуют с операционной системой, возникает потребность передачи управления с низкого уровня привилегий на уровень привилегий операционной системы. Для таких передач есть два способа. Первый более простой и называется использование 1)подчиненных сегментов. Второй более сложный – использование специальных дескрипторов, названных 2)шлюзами вызовов.
Сегмент кода определяется как подчиненный, если бит c в байте прав доступа дескриптора сегмента установлен в 1. при обращении к таким сегментам обычное правило защиты CPL = DPL не действует, действует только правило, что CPL >= DPL, т.е. можно передавать управление на более высокий или текущий уровень привилегий. При передаче управления на подчиненный сегмент два младших бита регистра CS не изменяются. Таким образом, выполнение программы будет производиться на том же уровне, на котором выполнялась вызывающая программа.
Шлюзы вызова позволяют реализовать фактическое изменение уровня привилегий.
Шлюз вызова определяет точку входа программе. Дескриптор шлюза вызова определяет полный указатель (селектор + смещение) точки входа в процедуру назначения, которой передается управление. Дескриптор шлюза вызова – это своеобразный интерфейсный слой между сегментами кода, находящимися на различных уровнях привилегий. Шлюзы вызова определяют разрешенные точки входа в более привилегированный код и являются единственным средством смены уровня привилегии. Дескрипторы шлюзов вызова не определяют никакого адресного пространства, поэтому у них нет полей базы и предела. По своей сути это даже не дескрипторы, но их размещают либо в глобальной дескрипторной таблице, либо, при необходимости, в локальных дескрипторных таблицах. Селекторы для выбора дескрипторов шлюзов вызова необходимо загружать только в сегментный регистр CS и ни в какие другие сегментные регистры. Адресовать шлюз вызова можно только в команде межсегментного вызова far call, использование far jmp запрещено. Сама команда call должна адресовать шлюз вызова, а не сегмент кода назначения.
Реализованный в Intel процессорах косвенный вызов привилегированных процедур имеет несколько преимуществ:
1. Привилегированный код сильно защищен, и вызывающие его программы не могут его разрушить. При этом предполагается, что сам код такой процедуры тщательно отлажен и не содержит ошибок.
2. Шлюзы вызова делают привилегированные процедуры невидимыми для программ на внешних уровнях привилегий.
3. Так как вызывающая программа прямо адресует только шлюз, реализуемые процедурой функции можно изменить или переместить их в адресном пространстве, не затрагивая интерфейс со шлюзом.
Правила защиты при использовании шлюза вызова
1.
;
2.
;
3.
.Это
правило предотвращает передачу на более
низкий уровень привилегий;
4.
.