
- •Билет 1
- •1. Основы ос Unix, возможности, стандартизация (1) – 4
- •Отличительные черты ос unix
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Последовательность действий по преобразованию адреса в защищенном режиме
- •Билет 2
- •1. Понятие системного вызова в ос unix. Обработка ошибок (2) – 9
- •Обработка ошибок
- •Void perror (s)
- •Void perror (const char *s);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Особенности современных операционных систем (2, 28) – 122
- •Концепция ос на основе микроядра
- •Многопоточность
- •Cимметричная многопроцессорность.
- •Распределенные ос
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Концепция слоистой операционной системы и системы на основе микроядра.
- •Билет 4
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов (4, 18) – 23
- •Атрибуты файла
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •Int chown (const char *path, uid_t owner, gid_t group);
- •Int lchown (const char *path, uid_t owner, gid_t group);
- •Int fchown (int fd, uid_t owner, gid_t group): ,
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 5
- •1. Неименованные каналы в ос unix (5) – 77
- •Int pipe(int fd[2]);
- •2. Взаимодействие процессов. Задача взаимного исключения. Алгоритм Деккера (5) – 147
- •3. Понятие процесса, модели процессов (5) – 132
- •Билет 6
- •Метаданные файлов в ос unix (7) – 36
- •Int stat(const char *path, struct stat *buf);
- •Int fstаt(int fd, struct stat *buf);
- •Int lstat(const char *path, struct stat *buf);
- •2.Взаимодействие последовательных процессов. Задача взаимного исключения. Вариант2.
- •3. Описание процесса, таблица процесса (6) – 136
- •Билет 7
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 8
- •1. Атрибуты процессов в unix (8) – 66
- •2.Применение общего семафора для решения задачи "производитель-потребитель" с неограниченным буфером.
- •3. Концепция потока, как составной части процесса (8) – 139
- •Билет 9
- •1. Разработка программ в ос unix. Обработка ошибок, переменные окружения (9)
- •Int putenv(const char *string);
- •Int setenv(const char * name, const char * value, int ov );
- •Int unsetenv(const char * name);
- •Обработка ошибок
- •Void perror (const char *s);
- •2. Применение двоичных семафоров для решения задачи «производитель» - «потребитель» (буфер неограниченный) (9, 21)
- •3. Концепция виртуализации (9, 17) –
- •Билет 10
- •1. Файлы, отображаемые в память (10) – 33
- •Void *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Подсистема управления памятью, требования, предъявляемые к ней (10)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 12
- •1. Сигналы в ос unix. Их назначение и обработка (12) – 70
- •Void (*sa_handler)(int);
- •Void (*sa_sigaction)(int, siginfo_t *, void *);
- •Int sa_flags;
- •Int pause (void);
- •2. Взаимодействие процессов через переменные состояния. Пример приоритетного правила (12) – 157
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 13
- •1. Функции для работы с сигналами (13) – 70
- •Void (*sa_handler)(int);
- •Void (*sa_sigaction)(int, siginfo_t *, void *);
- •Int sa_flags;
- •Int pause (void);
- •Наборы сигналов
- •Блокировка сигналов
- •Int sigprocmask(int how, const sigset_t *set, sigset_t, *oldset);
- •Int sigaсtion(int signo, const struct sigactoin *act, struct sigaction *oldact);
- •Void my_handler(int signo)
- •Void my_handler(int signo, siginfo_t *si, void ucontext )
- •2. Проблема тупиков. Алгоритм банкира (13)
- •3. Задача замещения при управлении виртуальной памятью, часовой алгоритм.
- •Билет 14
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •2. Задача взаимного исключения. Алгоритм Петерсона (14, 25) – 148
- •3.Распределение памяти. Система двойников.
- •Система двойников при распределении памяти.
- •Билет 15
- •1. Файловая система в ос unix ext2 (15) – 51
- •Организация файловой системы ext2
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 16
- •1.Каналы в ос unix (16) – 80
- •Int pipe(int fd[2]);
- •Int mkfifo(const char *pathname,mode_t mode);
- •Размер канала и взоимодействие процессов при передаче данных
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Организация защиты в процессорах ia32
- •Билет 17
- •1. Процессы в ос unix, системные вызовы wait, exit (17) – 60, 63
- •Void _exit(int exit_code);
- •Void exit(int status);
- •Int atexit(void(*func)(void));
- •2. Монитороподобные средства синхронизации для решения задачи взаимного исключения (17) – 160
- •Механизм типа «условная критическая область»
- •3. Концепция виртуализации
- •Билет 18
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов
- •Атрибуты файла
- •Int chmod(const char *path, mode_t mode);
- •Int fcmod(int fd, mode_t mode);
- •Int chown (const char *path, uid_t owner, gid_t group);
- •Int lchown (const char *path, uid_t owner, gid_t group);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Схемы распределения памяти
- •Билет 19
- •1. Взаимодействие процессов в ос unix, очереди сообщений (19) – 83
- •Int msgget (key_t key, int permflags);
- •Int msgsnd(int mqid, const void *message, size_t size, int flags);
- •Int msgrcv(int mqid, void *message, size_t size, long msg_type, int flags);
- •Int msgctl(int mqid, int command, struct msqid_ds *msq_stat);
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 20
- •1 Взаимодействие процессов в ос unix с применением семафоров (20) – 93
- •V(sem) или signal (sem)
- •Int semget(key_t key, int nsems, int permflags);
- •Int semctl (int semid, int sem_num, int command, union semun ctl_arg);
- •Int semop(int semid, struct sembuf *op_array, size_t num_ops);
- •2. Применение общего семафора для решения задачи "производитель-потребитель" с неограниченным буфером.
- •3. Механизмы поддержки многозадачности в процессорах ia32 (20)
- •Билет 21
- •1. Работа с файлами в ос unix. Системные вызовы (21) – 25
- •Int open(const char *name, int flags);
- •Int open(const char *name, int flags, mode_l mode);
- •2. Применение двоичных семафоров для решения задачи "производитель-потребитель" (буфер неограниченный).
- •3. Страничная организация памяти в процессоре ia32
- •Билет 22
- •1. Взаимодействие процессов в ос unix. Разделяемая память (22) – 100
- •Int shmget(key_t key, size_t size, int permflags);
- •Void *shmat(int shmid, const void *daddr, int shmflags);
- •Int shmctl(int shmid, int command, struct shmid ds *shm_stat);
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Организация защиты в процессорах ia32
- •Билет 23
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Задача замещения при управлению виртуальной памятью, часовой алгоритм.
- •Билет 24
- •1. Понятие потока в ос unix. Создание потока, завершение потока (24) – 106
- •Int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,
- •Void*(*start_routine)(void *), void *arg);
- •Функция для завершения нити (потока) исполнения
- •Int pthread_join(thread_t tid, void **status);
- •Int pthread_detach(thread_t tid);
- •Досрочное завершение потока
- •Int pthread_cancel(pthread_t thread);
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20, 24) - 152
- •3. Схемы распределения памяти (18, 24)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Задача взаимного исключения. Алгоритм Петерсона
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 26
- •1. Поток в ос unix. Синхронизация потоков, получение информации о потоке.
- •Int pthread_key_create(pthread_key_t *key, void(*destructor)(void *));
- •Int pthread_setschedparam(pthread_t tid, int policy,
- •Int pthread_getschedparam(pthread_t tid, int policy, struct schedparam *param);
- •Int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Принципы построения ос (7, 19, 26) – 128
- •Билет 27
- •1. Применение мьютексов при взаимодействии потоков в ос unix.
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •1. Применение блокировок чтения-записи при взаимодействии потоков в ос unix.
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Особенности современных операционных систем (2, 28) – 122
- •Концепция ос на основе микроядра
- •Многопоточность
- •Cимметричная многопроцессорность.
- •Распределенные ос
2.Взаимодействие последовательных процессов. Задача взаимного исключения. Вариант2.
Если двум или более процессам необходимо взаимодействовать друг с другом, то они должны быть связаны, то есть иметь средства для обмена информацией. Предполагается, что процессы связаны слабо. Под этим подразумевается, что кроме достаточно редких моментов явной связи эти процессы рассматриваются как совершенно независимые друг от друга. В частности, не допускаются какие-либо предположения об относительных скоростях различных процессов. В качестве примера рассматривается два последовательных процесса, которые удобно считать циклическими. В каждом цикле выполнения процесса существует критический интервал. Это означает, что в любой момент времени только один процесс может находиться внутри своего критического интервала. Чтобы осуществить такое взаимное исключение, оба процесса имеют доступ к некоторому числу общих переменных. Операции проверки текущего значения такой общей переменной и присваивание нового значения общей переменной рассматриваются как неделимые. То есть, если два процесса осуществляют присваивание новое значение одной и той же общей переменной одновременно, то присваивание происходит друг за другом и окончательное значение переменной одному из присвоенных значений, но никак не их смеси. Если процесс поверяет значение переменной одновременно с присваиванием ей значения другим процессом, то первый процесс обнаруживает, либо старое, либо новое значение, но никак не их смесь.
int flag[2]; begin integer С1,С2;
void P0() С1 := 1; С2 := 1;
{ parbegin
while (1) процесс 1: begin L1: if (С2 = 0) then goto L1;
{ С1 := 0;
while (flag[1]); критический интервал 1;
flag[0]=1; С1 := 1;
критический интервал 1; остаток цикла 1;
flag[0]=0; goto L1;
…. end;
} процесс 2: begin L2: if (С1 = 0) then goto L2;
} С2 := 0;
void P1() критический интервал 2;
{ С2 := 1;
while (1) остаток цикла 2;
{ goto L2;
while (flag[0]); end;
flag[1]=1; parend;
критический интервал 2; end;
flag[1]=0;
….
}
}
void main()
{
flag[0]=0;
flag[1]=0;
parbegin(P0,P1);
}
Недостаток. При развитии процессов строго синхронно они могут одновременно войти в критический интервал.
3. Описание процесса, таблица процесса (6) – 136
ОС можно представить как некий механизм, управляющий тем, как процессы используют системные ресурсы. И т.к. одна из задач ОС - управление процессами и ресурсами, то ОС должна располагать информацией о текущем состоянии каждого ресурса и процесса. Для этих целей ОС создает и поддерживает таблицы с информацией по каждому объекту управления. Общая структура таблиц:
Таблицы памяти используются для того, чтобы следить за основной и вторичной (виртуальной) памятью. Часть основной памяти резервируется для ОС, остальная доступна процессам.
Эти таблицы включают следующую информацию:
1) объем основной памяти, отведенной процессу;
2) объем вторичной или виртуальной памяти, отведенной процессу;
3) все атрибуты защиты блоков основной и виртуальной памяти;
4) всю информацию, необходимую для управления виртуальной памятью.
Таблицы ввода-вывода.
Используются для управления устройствами ввода-вывода и каналами компьютерной системы. В каждый момент времени устройство ввода-вывода может быть либо свободным, либо отданным в распоряжение какому-либо процессу. Если выполняется операция ввода-вывода, то должна быть информация о состоянии этой операции. Например, какие адреса ОП задействованы в этой операции, кто является отправителем и получателем отправляемой информации.
Таблицы файлов.
В них находится информация о существующих файлах, их расположение на магнитных носителях, текущем состоянии и других атрибутов. В ОС может быть специальная подсистема управления памятью.
Таблицы процессов.
Содержат сведения о процессах, располагая которыми ОС может управлять процессами.
Для эффективного управления информацией, которая хранится в таблицах, должны иметься перекрестные ссылки и находится в определенном взаимодействии, особенно в таблицах процессов по отношению к таблицам ресурсов. Для создания этих таблиц ОС должна иметь информацию о конфигурации вычислительной системы: объем основной памяти, количество и вид устройств ввода/вывода, отнесение портов ввода/вывода к устройствам, информация о внешних устройствах хранения данных и т.п. Эти данные могут создаваться с участием оператора или с помощью специальных программ определения конфигурации вычислительной системы.