
- •1. Задачи и пути развития диагностирования автомобилей.
- •2. Общие положения диагностирования.
- •3. Методы диагностирования.
- •5. Формирование системы диагностирования.
- •6. Системы диагноза технического состояния.
- •7. Структура автомобиля.
- •8. Статистическая характеристика автомобиля.
- •9. Влияние рассеивания ресурса на эффективность диагностирования.
- •10. Закономерности изменения структурных параметров.
- •11. Структурно-следственная модель объекта диагностирования.
- •12. Контролепригодность (кп).
- •13. Основные и дополнительные показатели кп. Методы их расчета.
- •14. Структурные и диагностические параметры.
- •15. Характеристика диагностических параметров.
- •16. Классификация диагностических параметров.
- •17. Оценка информативности диагностических параметров.
- •18. Номинальное, упреждающее, предельное значение диагностического параметра.
- •19. Определение нормативных показателей.
- •20. Корректировка номинального значения диагностического параметра.
- •21. Построение логических моделей.
- •22. Анализ логической модели, построение таблиц функций неисправностей.
- •23. Принципы построения алгоритмов поиска места отказа.
- •24. Минимизация набора контролируемых параметров.
- •25. Построение алгоритма поиска места отказа.
- •26. Статистический метод определения периодичности диагностирования по допустимому уровню вероятности безотказной работы.
- •27. Индивидуальный метод определения периодичности диагностирования по частной реализации диагностического параметра.
- •28. Экономико–вероятностный метод определения периодичности диагностирования по совокупности реализаций диагностического параметра.
- •29. Экономико–вероятностный метод определения периодичности диагностирования по дискретным значениям диагностического параметра.
- •30. Теория распознавания образов.
- •31. Выбор эталона в теории распознавания образов.
- •32. Алгоритм распознавания.
- •33. Надежность распознавания.
- •34. Метод Байеса: основы метода.
- •35. Обобщенная формула Байеса.
- •36. Диагностическая матрица.
- •37. Решающее правило метода Байеса.
- •49. Функциональная схема эсу.
- •50. Электронный блок управления.
- •51. Встроенная система самодиагностики.
- •52. Диагностика с помощью световых мигающих кодов. Пример: Диагностика возможных неисправностей электронной системы управления автомобилей маз с двигателем ямз.
- •53. Основные сведения о стандарте obd-II.
- •54. Структура программного обеспечения систем obd-II.
- •55. Монитор каталитического нейтрализатора.
- •56. Монитор датчиков кислорода.
- •57. Монитор пропусков в системе зажигания.
- •58. Монитор топливной системы.
- •59. Монитор системы улавливания паров бензина.
- •60. Монитор системы рециркуляции выхлопных газов.
- •61. Монитор инжекции вторичного воздуха в каталитический нейтрализатор.
- •62. Назначение, устройство и принцип действия дмрв.
- •63. Назначение, устройство и принцип действия дпдз.
- •64. Назначение, устройство и принцип действия дкк.
- •65. Назначение, устройство и принцип действия дпкв.
- •66. Назначение, устройство и принцип действия дпрв.
- •67. Назначение, устройство и принцип действия дд.
- •68. Назначение, устройство и принцип действия модуля электробензонасоса.
- •69. Назначение, устройство и принцип действия электромагнитных топливных форсунок бензиновых двигателей.
- •70. Назначение, устройство и принцип действия регулятора холостого хода. Схема регулировки подачи воздуха.
- •71. Назначение, устройство и принцип действия шаговых двигателей.
- •72. Назначение, устройство и принцип действия двух- и четырехвыводного модулей зажигания.
- •73. Назначение, устройство и принцип действия индивидуальных катушек зажигания.
- •74. Назначение, устройство и принцип действия электромагнитных реле.
- •75. Достоинства и недостатки систем с впрыском бензина.
- •76. Классификация систем впрыска.
- •77. Функциональная схема системы управления впрыском бензина.
- •78. Режимы работы системы управления впрыском.
- •79. Особенности систем впрыска бензина l-Jetronic, Mono-Jetronic.
- •80. Назначение электронной системы зажигания. Требования к системам зажигания со статическим распределением зажигания с нормируемым временем накопления энергии.
- •81. Функциональная схема электронной системы зажигания.
- •82. Влияние сигналов основных (дпдз, дпкв, дпрв) и дополнительных (дтд, дд) датчиков.
- •83. Работа электронной системы зажигания.
- •84. Каталитический нейтрализатор.
- •85. Система дополнительной подачи воздуха в выпускной коллектор.
- •86. Система улавливания паров бензина.
- •87. Система рециркуляции отработавших газов.
- •88. Основные функции суд me-Motronic.
- •89. Электронно-управляемая педаль газа, устройство и принцип действия.
- •90. Система непосредственного впрыска топлива, ее преимущества и недостатки.
- •91. Способы смесеобразования: послойная, бедная гомогенная, гомогенная стехиометрическая смеси.
- •92. Концепция управления двигателем по величине крутящего момента.
- •93. Состав отработавших газов.
- •94. Характеристика основных компонентов ог (оксиды азота, оксиды углерода, углеводороды, сажа).
- •95. Анализаторы отработавших газов бензиновых и газобензиновых двигателей.
- •96. Принцип действия газоанализатора (на основе инфракрасного излучения, химические датчики многокомпонентных газоанализаторов).
- •97. То и подготовка газоанализатора к работе.
- •98. Дымомеры - анализаторы ог дизельных двигателей.
- •99. Диагностика по показаниям газоанализатора.
- •100. Причины повышения содержания со и сн в ог.
- •101. Необходимость измерения содержания кислорода и двуокиси углерода в ог.
- •102. Причины повышения содержания оксидов азота.
- •103. Общие сведения об автомобильных сканерах. Достоинства сканеров.
- •104. Возможности автомобильных сканеров.
- •105. Режимы компьютерной диагностики.
- •106. Считывание ошибок и текущих данных из памяти эбу и их интерпретация.
- •107. Общие сведения о мотор-тестерах.
- •108. Мотор-тестерные режимы: относительная компрессия (компрессия по току); неравномерность вращения коленвала; баланс цилиндров.
- •109. Специализированное диагностическое оборудование: манометр топливной рампы; тестер форсунок; разрядник; индикатор форсунок.
- •110. Специализированное диагностическое оборудование: тестер модулей зажигания; тестер рхх; имитаторы датчиков.
- •111. Общие сведения об автомобильных цифровых осциллографах.
- •112. Аналоговые и цифровые сигналы, их параметры.
- •113. Измерения при помощи осциллографа.
- •114. Эталонные осциллограммы.
- •115. Диагностика зажигания с помощью осциллографа.
- •116. Диагностика компонентов эсуд с помощью осциллографа.
- •117. Тормозные стенды общего назначения.
- •118. Виды стендов и методы испытания тормозных систем.
- •119. Принципиальное устройство роликовых стендов.
- •120. Нормативные требования к тормозным системам, проверяемые стендовым методом.
- •121. Приборы для измерения суммарного люфта рулевого управления.
- •122. Механический люфтомер.
- •123. Электронный люфтомер.
- •124. Прибор для измерения натяжения ремня насоса гидроусилителя.
- •125. Нормативные требования к рулевому управлению.
- •126. Приборы для проверки и регулировки света фар.
- •127. Требования к компонентам световых приборов.
- •128. Детектор зазоров ходовой части и подвески.
- •129. Стенды для проверки амортизаторов и подвески.
- •130. Методы диагностирования амортизаторов и подвески.
- •131. Порядок проверки технического состояния колес и шин.
- •1. Задачи и пути развития диагностирования автомобилей.
- •2. Общие положения диагностирования.
- •3. Методы диагностирования.
88. Основные функции суд me-Motronic.
Устройства управления двигателем решают в первую очередь задачи подготовки топливно-воздушной смеси, точного впрыска топлива, зажигания и очистки отработавших газов. Для этого регистрируется текущее состояние работы двигателя, определяется его соответствие норме, производится управление исполнительными элементами, самоконтроль и контроль исполнения с помощью диагностических функций.
К основным функциям СУД можно отнести следующее:
регулирование подачи топлива по составу смеси,
ограниченная подача топлива при определенных оборотах коленвала.
зажигание в последовательности с быстрым стартом,
регулировку холостого хода со способностью к обучению,
управление зажиганием по детонации,
регулировка фаз газораспределения с воздействием на механизм газораспределительния,
лямбда-регулировка со способностью к обучению,
вентиляция топливного бака со способностью к обучению,
рециркуляция выхлопных газов со способностью к обучению,
регулирование детонации со способностью к обучению,
самодиагностика.
89. Электронно-управляемая педаль газа, устройство и принцип действия.
Суть конструкции электронного привода акселератора состоит в том, что перемещение дроссельной заслонки осуществляется не как обычно, с помощью троса и тяг, непосредственно связанных с педалью акселератора в салоне, а электродвигателем, работающим под управлением электроники. При этом отсутствует традиционная механическая связь между педалью акселератора и дроссельной заслонкой.
Это означает, что изменение водителем положения педали акселератора преобразуется в электрический сигнал и передается в блок управления, который, в свою очередь, осуществляет управление перемещением дроссельной заслонки.
Такая организация взаимодействия позволяет блоку управления изменять положение дроссельной заслонки и влиять на величину крутящего момента двигателя даже в том случае, когда водитель не меняет положения педали акселератора.
Модуль педали акселератора (ПА) состоит из педали акселератора, датчика 1 положения ПА G79 и датчика 2 положения ПА G185. Два одинаковых датчика используются для повышения надёжности модуля ПА.
Получая информацию от обоих датчиков положения педали акселератора, блок управления двигателем определяет положение педали в каждый момент времени. Датчики конструктивно представляют собой потенциометры со скользящим контактом, укрепленным на общем валу. При каждом изменении положения педали изменяется сопротивление датчиков и, соответственно, напряжение, которое передается на блок управления двигателя.
Каждый датчик положения педали акселератора для повышения надежности имеет свой провод питания напряжением 5 В (красный), свой провод соединения с "массой" (коричневый) и свой выходной сигнал (зеленый провод). Датчик G185 нагружен дополнительным сопротивлением. Благодаря этому получают две различные характеристики аналоговых сигналов. В блоке управления сигналы датчиков анализируются в процентах. Это значит, что 100% соответствует 5 В в цепи без нагрузочного сопротивления.
По граничным значениям напряжения опознаются режимы "кик-дауна" и холостого хода. Выключатель режима холостого хода расположен в модуле управления дроссельной заслонки.