
- •1. Назначение электрических машин и трансформаторов.
- •3. Основные соотношения в идеальном трансформаторе.
- •5. Уравнение магнитодвижущих сил и токов трансформатора.
- •2. Принцип действия и классификация трансформаторов.
- •4. Уравнения напряжений трансформатора.
- •6. Приведение параметров вторичной обмотки и схема замещения приведённого трансформатора.
- •7. Векторная диаграмма трансформатора.
- •8. Опыт холостого хода трансформатора.
- •10. Потери и кпд трансформатора.
- •9. Внешняя характеристика трансформатора.
- •11. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов.
- •12.Смысл уравнений Роговского
- •13.Автотрансформатор
- •14.Измерительные трансформаторы.
- •15. Трансформаторы для дуговой электросварки.
- •16. Общие понятия о асинхронной машине
- •17.Устроиство и назначение основных частей асинхронной машины
- •18. Принцип действия асинхронной машины.
- •19. Связь основных велечин со скольжением.
- •20.Исходные уравнения в асинхронной машине.
- •2.5.2. Цепь ротора
- •2.5.3. Ток статора
- •20. Исходные уравнения в асинхронной машине.
- •24. Полезный вращающий момент. Рабочие характеристики асинхронного двигателя
- •23. Выражение для электромагнитного момента.
- •25. Установившийся режим работы асинхронного двигателя.
- •26. Двигательный режим работы асинхронной машины. Энергетическая диаграмма.
- •Режим двигателя.
- •27. Прямой пуск.
- •28. Реакторный пуск.
- •32. Самозапуск асинхронных двигателей.
- •29. Автотрансформаторный пуск.
- •30. Пуск переключением звезда-треугольник
- •31. Пуск двигателя с фазным ротором с помощью пускового реостата.
- •37. Характеристика холостого хода синхронного генератора.
- •33. Устройство и назначение основных частей синхронной машины.
- •34. Принцип действия синхронного генератора.
- •35. Магнитное поле и параметры обмотки якоря синхронного генератора.
- •36. Продольная и поперечная реакция якоря синхронного генератора.
- •38. Характеристика короткого замыкания синхронного генератора.
- •41. Нагрузочная характеристика синхронного генератора.
- •39. Внешняя характеристика синхронного генератора.
- •40. Регулировочная характеристика синхронного генератора.
- •42. Включение синхронных генераторов на параллельную работу.
- •45. Параллельная работа синхронных генераторов на сеть ограниченной мощности.
- •43. Условия синхронизации генераторов.
- •44. Режим синхронного компенсатора синхронного генератора.
- •47. Асинхронный режим невозбуждённой синхронной машины.
- •49. Применение синхронных двигателей.
- •50. Способы пуска синхронных двигателей.
- •50.Способы пуска синхронных двигателей
- •51. Рабочие характеристики синхронного двигателя.
- •52. Работа синхронного двигателя в режиме синхронного компенсатора.
- •53.Устройство и назначение основных частей машин постоянного тока.
- •54. Принцип действия двигателя постоянного тока.
- •55. Принцип действия генератора постоянного тока.
- •56. Назначение коллектора в машине постоянного тока.
- •57. Виды возбуждения в машине постоянного тока.
56. Назначение коллектора в машине постоянного тока.
Проводники обмотки якоря, по которым проходит ток, находясь в магнитном поле, созданном полюсами, испытывают силу, под действием которой они выталкиваются из магнитного поля. Для того чтобы якорь двигателя вращался в какую-либо определенную сторону, необходимо, чтобы направление тока в проводнике изменялось на обратное, как только проводник выйдет из зоны действия одного полюса, пересечет нейтральную линию и войдет в зону действия соседнего, разноименного полюса. Для изменения направления тока в проводниках обмотки якоря двигателя в момент, когда проводники проходят нейтральную линию, служит коллектор.
Назначение коллектора поясняется на рис. 316. Проводник, свернутый витком, помещен в магнитное поле. Концы витка припаяны к коллекторным пластинам а и б, к которым прижаты щетки, причем к левой щетке подключен плюс сети, к правой — минус сети.
В положении I ток сети попадает на коллекторную пластину а, от нее протекает по верхнему проводнику 1 витка, имея направление «от нас», возвращается по нижнему проводнику 2 витка, протекая «к нам» (заднее соединение рамки на схеме не показано), поступает на коллекторную пластину б и отсюда через щетку уходит в сеть. Применяя правило «левой руки», находим, что виток будет стремиться повернуться в сторону, противоположную вращению стрелки часов.
В положении II сторона витка I расположилась под другим полюсом, и направление тока в проводнике изменилось. То же самое случилось со стороной 2 витка. Сейчас под положительной щеткой оказалась коллекторная пластина б, под отрицательной щеткой — пластина а. Применяя правило «левой руки», убеждаемся, что направление вращения витка остается прежним, т. е. против вращения стрелки часов.
Следовательно, как только проводник в своем движении пересекает нейтральную линию, коллекторная пластина, соединенная с этим проводником, выходит из соприкосновения со щеткой, имеющей одну полярность, и подходит под щетку, обладающую другой полярностью
57. Виды возбуждения в машине постоянного тока.
Все рабочие характеристики двигателя постоянного тока, как и генератора, зависят от способа включения цепи возбуждения по отношению к цепи якоря. Соединение этих цепей может быть параллельным, последовательным, смешанным и, наконец, они могут быть независимы друг от друга.
Двигатели с параллельным возбуждением.
Здесь обмотка возбуждения и обмотка якоря соединены параллельно. Обмотка возбуждения имеет большее количество витков, чем обмотка якоря, поэтому ток обмотки возбуждения в большинстве случаев составляет несколько процентов от тока якоря. В цепь обмотки возбуждения может включаться регулировочный реостат. В цепь якоря включается пусковой реостат ПР.
Двигатель с независимым возбуждением.
Если обмотку возбуждения подключить к другому источнику постоянного напряжения, то получим двигатель с независимым возбуждением. Такими же свойствами обладают электродвигатели с постоянным магнитом.
Скоростная характеристика двигателей с независимым и параллельным возбуждением – это зависимость n = f ( Iя ) при U = const и Iе = const, где
n - скорость
Iя - ток якоря
Iе - ток возбуждения.
Рис.8.5.4. Скоростная характеристика.
Изменение скорости вращения может происходить за счёт изменения нагрузки и магнитного потока. Увеличение тока нагрузки незначительно изменяет внутреннее падение напряжения из-за малого сопротивления цепи якоря и поэтому лишь незначительно уменьшает скорость вращения двигателя. Что же касается магнитного потока, то вследствие реакции якоря при увеличении тока нагрузки он несколько уменьшается, что приводит к незначительному увеличению скорости двигателя. Таким образом, скорость вращения двигателя с параллельным возбуждением изменяется очень мало. Скорость вращения двигателя определяется формулой:
n = (U – IяRя) / c∙Φ, где
c – коэффициент, зависящий от устройства машины.
Скорость вращения двигателя с независимым возбуждением можно регулировать либо изменением сопротивления в цепи якоря, либо изменением магнитного потока. Следует отметить, что чрезмерное уменьшение тока возбуждения и, особенно, случайный обрыв этой цепи очень опасны для двигателей с параллельным и независимым возбуждением, т.к. ток в якоре может возрасти до недопустимо больших значений. При небольшой нагрузке (или на холостом ходу) скорость может настолько возрасти, что станет опасной для целостности двигателя.
Двигатель с последовательным возбуждением.
У такого двигателя ток якоря является одновременно и током возбуждения, т.к. обмотка возбуждения включена последовательно с якорем. По этой причине магнитный поток двигателя изменяется с изменением нагрузки. Скорость двигателя :
n =[ U – Iя (Rя + Rв)] / c∙Φ, где
Rя – сопротивление якоря
Rв – сопротивление обмотки возбуждения.
Скоростная характеристика двигателя посл. возбуждения.
На этом графике представлена скоростная характеристика двигателя последовательного возбуждения.
Из этой характеристики видно, что скорость двигателя сильно зависит от нагрузки. При увеличении нагрузки увеличивается падение на сопротивлении обмоток при одновременном увеличении магнитного потока, что приводит к значительному уменьшению скорости вращения. Поэтому такие двигатели не следует пускать вхолостую или с малой нагрузкой. Двигатели с последовательным возбуждением применяют в тех случаях, когда необходим большой пусковой момент или способность выдерживать кратковременные перегрузки. Они используются в качестве тяговых двигателей в трамваях, троллейбусах, метро и электровозах, а также на подъёмных кранах и для пуска двигателей внутреннего сгорания (стартеры).
Двигатель со смешанным возбуждением.
На каждом полюсе такого двигателя имеются две обмотки – параллельная и последовательная. Их можно включить так, чтобы магнитные потоки складывались (согласное включение) или вычитались (встречное включение). Формулы для скорости вращения и вращающего момента для такого двигателя:
n = (U – Iя ∙ Rя ) / c∙( Φпарал. +/- Φпосл.)
М = c ∙ Iя ∙ (Φпарал. +/- Φпосл.)