
- •1. Назначение электрических машин и трансформаторов.
- •3. Основные соотношения в идеальном трансформаторе.
- •5. Уравнение магнитодвижущих сил и токов трансформатора.
- •2. Принцип действия и классификация трансформаторов.
- •4. Уравнения напряжений трансформатора.
- •6. Приведение параметров вторичной обмотки и схема замещения приведённого трансформатора.
- •7. Векторная диаграмма трансформатора.
- •8. Опыт холостого хода трансформатора.
- •10. Потери и кпд трансформатора.
- •9. Внешняя характеристика трансформатора.
- •11. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов.
- •12.Смысл уравнений Роговского
- •13.Автотрансформатор
- •14.Измерительные трансформаторы.
- •15. Трансформаторы для дуговой электросварки.
- •16. Общие понятия о асинхронной машине
- •17.Устроиство и назначение основных частей асинхронной машины
- •18. Принцип действия асинхронной машины.
- •19. Связь основных велечин со скольжением.
- •20.Исходные уравнения в асинхронной машине.
- •2.5.2. Цепь ротора
- •2.5.3. Ток статора
- •20. Исходные уравнения в асинхронной машине.
- •24. Полезный вращающий момент. Рабочие характеристики асинхронного двигателя
- •23. Выражение для электромагнитного момента.
- •25. Установившийся режим работы асинхронного двигателя.
- •26. Двигательный режим работы асинхронной машины. Энергетическая диаграмма.
- •Режим двигателя.
- •27. Прямой пуск.
- •28. Реакторный пуск.
- •32. Самозапуск асинхронных двигателей.
- •29. Автотрансформаторный пуск.
- •30. Пуск переключением звезда-треугольник
- •31. Пуск двигателя с фазным ротором с помощью пускового реостата.
- •37. Характеристика холостого хода синхронного генератора.
- •33. Устройство и назначение основных частей синхронной машины.
- •34. Принцип действия синхронного генератора.
- •35. Магнитное поле и параметры обмотки якоря синхронного генератора.
- •36. Продольная и поперечная реакция якоря синхронного генератора.
- •38. Характеристика короткого замыкания синхронного генератора.
- •41. Нагрузочная характеристика синхронного генератора.
- •39. Внешняя характеристика синхронного генератора.
- •40. Регулировочная характеристика синхронного генератора.
- •42. Включение синхронных генераторов на параллельную работу.
- •45. Параллельная работа синхронных генераторов на сеть ограниченной мощности.
- •43. Условия синхронизации генераторов.
- •44. Режим синхронного компенсатора синхронного генератора.
- •47. Асинхронный режим невозбуждённой синхронной машины.
- •49. Применение синхронных двигателей.
- •50. Способы пуска синхронных двигателей.
- •50.Способы пуска синхронных двигателей
- •51. Рабочие характеристики синхронного двигателя.
- •52. Работа синхронного двигателя в режиме синхронного компенсатора.
- •53.Устройство и назначение основных частей машин постоянного тока.
- •54. Принцип действия двигателя постоянного тока.
- •55. Принцип действия генератора постоянного тока.
- •56. Назначение коллектора в машине постоянного тока.
- •57. Виды возбуждения в машине постоянного тока.
24. Полезный вращающий момент. Рабочие характеристики асинхронного двигателя
Зависимость М2 = f(P2). Зависимость полезного момента на валу асинхронного двигателя М2 от полезной мощности Р2 определяется выражением M2 = Р2/ω2 = 60 P2/(2πn2) = 9,55Р2/n2, где Р2 — полезная мощность, Вт; ω2 = 2πf2/60 — угловая частота вращения ротора.
Из этого выражения следует, что если n2 = const, то график М2 = f2(Р2) представляет собой прямую линию. Но в асинхронном двигателе с увеличением нагрузки Р2 частота вращения ротора уменьшается, а поэтому полезный момент на валу М2 с увеличением нагрузки возрастает не сколько быстрее нагрузки, а следовательно, график М2 = f (P2) имеет криволинейный вид.
21.Т-образная схема замещения асинхронного двигателя
Полная схема замещения асинхронного двигателя при вращающемся роторе отличается от схемы замещения асинхронного двигателя с заторможенным ротором только наличием в цепи ротора активного сопротивления, зависящего от нагрузки (рис. 1, а). Эту схему замещения называют Т-образной. Следовательно, и в этом случае удается свести теорию асинхронной машины к теории трансформатора. Векторная диаграмма для Т-образной схемы замещения приведена.
Т-образная схема замещения асинхронного двигателя
Рис. 1
Сопротивления намагничивающего контура значительно меньше соответствующих значений для схемы замещения трансформатора, так как ток холостого хода асинхронного двигателя гораздо больше, чем у трансформатора. Если при рассмотрении работы трансформатора часто можно пренебречь намагничивающим контуром, то при рассмотрении работы асинхронного двигателя этого сделать нельзя, так как ошибка может получиться значительной.
Сопротивление r2‘(1 – S)/S можно рассматривать как внешнее сопротивление, включенное в обмотку ротора. Оно является единственным переменным параметром схемы. Изменение этого сопротивления эквивалентно изменению нагрузки на валу двигателя, а следовательно, изменению скольжения S.
22. Г-образная схема замещения асинхронного двигателя
Можно упростить вычисления, преобразовав Т-образную схему замещения в Г-образную, как это показано на рисунке 2, позиции а. Для Г-образной схемы замещения имеем:
Г-образная схема замещения асинхронного двигателя
Рис. 2
При анализе электромагнитных процессов в машинах общего применения часто полагают С1≈1, что существенно облегчает расчеты и мало влияет на точность полученных результатов. Г-образную схему замещения при С1 = 1 называют упрощенной схемой замещения с вынесенным намагничивающим контуром (рис. 2, б).
23. Выражение для электромагнитного момента.
Электромагнитный момент возникает при наличии магнитного поля, создаваемого обмоткой статора, и тока в обмотке ротора. Можно показать, что электромагнитный момент определяется соотношением:
M=CΦI2cosψ2.
Здесь:
–
конструктивный коэффициент;
ω0=2πf/p –
скорость вращения магнитного поля;
ψ2 –
сдвиг по фазе между ЭДС и током
ротора;
I2cosψ2 –
активная составляющая тока ротора.
Таким образом, величина электромагнитного момента зависит от результирующего магнитного поля Φ и активной составляющей тока ротора.
На рис. 2.12 приведено пояснение влияния cosψ2 на величину электромагнитного момента: а) ψ2=0°, (cosψ2=1); б) ψ2=90°,(cosψ2=0).
Рис.
2.12.
Как следует из рис. 2.12.а, если ψ2=0°, в создании электромагнитного момента участвуют все проводники обмотки ротора, т.е. момент имеет наибольшее значение. Если ψ2=90° (рис. 2.12.б), результирующая электромагнитная сила и момент равны нулю.
В режиме двигателя при изменении нагрузки на валу изменяется частота вращения ротора, что приводит к изменению скольжения, частоты тока ротора, индуктивного сопротивления ротора и cosψ2. В результате изменяется вращающий момент. На рис. 2.13 приведено пояснение влияния индуктивного сопротивления ротора на угол ψ2: а) при S=1 (пуск в ход); б) при S≤1 (после разгона). Наибольшие значения ЭДС и частота тока ротора имеют в момент пуска в ход, когда скольжение S=1. При этом f2=f1, X2>>R2, угол ψ2 близок к90° (рис. 2.13.а).
Рис.
2.13
За счет малого cosψ2 в момент пуска в ход асинхронные двигатели имеют ограниченный пусковой момент. Кратность пускового момента (по сравнению с номинальным) у них составляет
Mпуск/Mн=0,8÷1,8.
Причем большие цифры относятся к двигателям специальной конструкции с улучшенными пусковыми свойствами.
По мере разгона ротора двигателя частота тока ротора падает, уменьшается индуктивное сопротивление ротора X2S и угол ψ2уменьшается (рис. 2.13.б). Это приводит к увеличению вращающего момента и дальнейшему разгону двигателя.
Подставим в выражение для электромагнитного момента соотношения для I2, cosψ2 и Φ, полученные ранее:
,
,
.
Тогда
M=C |
E1E2R2S |
, |
4,44w1k1f[R22+(SX2)2] |
Используя соотношение:
|
E1 |
= |
w1k1 |
=kтр, |
E2 |
w2k2 |
где: kтр – коэффициент трансформации асинхронной машины.
Выразим E2=E1/kтр, а E1 приравняем к напряжению U1, подведенному к обмотке статора (E1≈U1). В результате получим другое выражение для электромагнитного момента, которое удобно использовать при анализе работы машины, при построении ее характеристик
M=Cм |
U12R2S |
. |
R22+(SX2)2 |
Из полученного выражения для электромагнитного момента следует, что он сильно зависит от подведенного напряжения (M∼U12). При снижении, например, напряжения на 10%, электромагнитный момент снизится на 19% (M∼(0,9U1)2=0.81U12). Это является одним из недостатков асинхронных двигателей, так как приводит на производстве к снижению производительности труда и увеличению брака.