
- •2)Гипотеза кварков.
- •2)Почему трением электризуются только разнородные вещества?
- •3)Почему трением практически невозможно наэлектризовать проводники? §2.Закон кулона
- •§3. Напряженность электростатического поля. Полевая трактовка закона кулона. Принцип суперпозиции.
- •§4 Линии вектора напряженности. Поток вектора напряженности.
- •2)Изобразить поле двух равных по величине положительных точечных зарядов;
- •4)Изобразить качественно поле:
- •§5 Теорема остроградского-гаусса.
- •3.Используя теорему Остроградского-Гаусса, получить формулу для расчета напряженности в произвольной точке поля заряда q равномерно распределенного по поверхности сферы.
- •6 Дифференциальная форма теоремы остроградского- гаусса
- •§7 Работа сил электростатического поля по перемещению заряда. Теорема о циркуляции вектора напряженности.
- •§8. Разность потенциалов, потенциал электростатического поля.
- •§9 Связь напряженности и разности потенциалов.Эквипотенциальные поверхности.
- •§11 Поле электрического диполя.
- •Тема II. Электростатическое поле при наличии проводников. §12 электрическое поле заряженного проводника.
- •13. Электростатическая индукция.
- •§14 Электрическая емкость уединенного проводника и системы проводников.
- •Тема III. Электрическое поле при наличии диэлектриков. §15 классификация диэлектриков.
- •§ 16 Диполь в электрическом поле.
- •17. Вектор поляризации и связанные заряды.
- •§ 18. Теорема остроградского – гаусса для вектора напряженности в диэлектриках. Вектор электрического смещения.
- •§ 19. Диэлектрическая восприимчивость и диэлектрическая проницаемость.
- •§ 20 Граничные условия.
- •§ 21 Сегнетоэлектрики.
- •Тема IV. Энергия электростатического взаимодействия. §22.Энергия взаимодействия системы неподвижных точечных зарядов.
- •§23 Энергия непрерывно распределенных зарядов, энергия заряженного проводника, конденсатора.
- •§ 24 Энергия электростатического поля, энергия взаимодействия заряженных тел.
- •Тема V. Стационарный электрический ток. § 25. Сила и плотность тока.
- •26. Уравнение непрерывности.
- •§ 27. Экспериментальные законы стационарного тока.
- •§ 28 Законы ома и джоуля – ленца в дифференциальной форме.
- •§ 29. Условия существования стационарного тока. Электродвижущая сила.
- •§ 30. Поле постоянного тока.
- •§ 31. Закон ома для замкнутой цепи.
- •§ 32. Правила кирхгофа для линейных разветвленных цепей.
- •§ 33. Квазистационарные токи.
- •Тема VI. Магнитное поле стационарного тока в вакууме. § 34. Закон взаимодействия элементов тока. Вектор магнитной индукции.
- •§ 35. Закон ампера. Сила лоренца.
- •§ 36 Линии вектора магнитной индукции. Теорема о полном магнитном потоке.
- •§ 37. Теорема о циркуляции вектора магнитной индукции. Вихревой характер магнитного поля.
- •§ 38.Контур с током в магнитном поле.
- •Тема VII. Магнитное поле в веществе. § 39. Источники магнитного поля в веществе. Вектор намагничивания.
- •§ 40. Связь молекулярных токов с вектором намагничивания.
- •§ 41. Теорема о циркуляции вектора магнитной индукции в магнетиках. Напряженность магнитного поля.
- •§ 42 Магнитная восприимчивость. Магнитная проницаемость. Источники линий напряженности.
- •§ 43. Граничные условия для векторов напряженности и магнитной индукции.
- •Тема VIII. Нестационарное магнитное поле. § 44. Явление электромагнитной индукции.
- •§ 45 Природа сторонних сил при явлении электромагнитной индукции.
- •§ 46. Явление самоиндукции.
- •§ 47. Взаимная индукция.
- •§ 48 Энергия магнитного поля.
- •Тема IX. Цепи переменного тока. § 49. Колебательный контур. Свободные элетромагнитные колебания в идельном контуре.
- •§ 50 Свободные колебания в контуре с активным сопротивлением.
- •§ 51. Цепь переменного тока с различной нагрузкой.
- •§ 52 Последовательная цепь переменного тока со смешанной нагрузкой.
- •§ 53. Энергия и мощность в цепи переменного тока.
- •§ 54 Разветвленная цепь переменного тока. Метод проводимостей.
- •§ 55.Вынужденные электромагнитные колебания. Резонанс напряжений.
- •§ 56 Резонанс токов.
- •§ 57.Трехфазный ток.
- •Тема X. Магнетики § 58 магнитомеханические явления.
- •§ 59 Диамагнетизм. Ларморова прецессия.
- •§ 60 Парамагнетики.
- •Самостоятельно: §61 ферромагнетики. Тема XI. Электромагнитное поле § 62 . Обобщения максвелла. Ток смещения.
- •§ 63 Полная система уравнений максвелла. Теория максвелла и границы ее применимости.
- •§ 64. Электромагнитные волны и их свойства.
- •§ 65. Закон сохранения энергии электромагнитного поля. Поток энергии.
- •§ 66. Излучение электромагнитных волн.
- •§ 67 Экспериментальные подтверждения теории максвелла: опыты герца и лебедева.
- •Тема XII. Электропроводность веществ. § 68. Классическая теория электропроводности металлов (друде-лоренца) и ее затруднения.
- •§69.Основные понятия зонной теории проводимости твердых тел.
- •§ 70 Собственная и примесная проводимость полупроводников,
- •§ 71 Работа выхода. Контактные явления в металлах.
- •§ 72 Контакт полупроводников с различным типом проводимости.
- •§ 73 Термоэлектрические явления.
§ 67 Экспериментальные подтверждения теории максвелла: опыты герца и лебедева.
Экспериментальное подтверждение теории Максвелла удалось получить только Герцу в 1888 г.
Источником электромагнитных волн, в принципе, может быть любой колебательный контур или проводник с переменным током, так как для возбуждения электромагнитных волн необходимо создать в пространстве переменное электрическое или магнитное поле.
Но, как уже обсуждалось, интенсивность излучения зависит от параметров источника и пропорциональна четвертой степени частоте колебаний.
Электромагнитные колебания легко возбуждаются в обычном колебательном контуре, но для увеличения интенсивности излучения необходимо, чтобы переменное поле создавалось в значительно большем объеме пространства.
Поскольку
,
,
,
то Герц, в своих опытах, уменьшая число
витков катушки и увеличивая расстояние
между обкладками конденсатора,
преобразовал «закрытый» колебательный
контур в «открытый» (рис.194), который
представлял собой, практически два
металлических шарика, соединенных
проводником.
РИС.193 РИС.194
Как уже обсуждалось, эта система называется, в его честь, вибратором Герца. Шарики – вибратор (В) Герца, заряжались за счет источника (рис.195), который является индуктором (И) электромагнитных колебаний. Когда напряжение между шариками достигало пробивного значения, возникала искра, т.е. переменный ток, а следовательно переменное электромагнитное поле.
Шарики разряжались, излучение прекращалось до тех пор, пока за счет источника между шариками опять не возникало напряжение равное напряжению пробоя.
Для регистрации электромагнитных волн Герц использовал второй, точно такой же по геометрическим характеристикам вибратор. В этом случае собственные частоты первого вибратора и резонатора (рис.194 – Р) совпадали, а при их соответствующем взаимном расположении, в случае электромагнитной волны, в резонаторе возникала искра.
Герцу удалось получить частоту колебаний порядка 100 МГц, что соответствовало длинам волн, которые можно зарегистрировать в лаборатории размерами до 15 м. Используя свинцовый экран для отражения волн, Герц по интенсивности искры в резонаторе фиксировал максимумы и минимумы возникших стоячих волн.
Опыты Герца доказали:
1)распространение волн, 2)позволили получить волны с длиной волны от 0,4 м до 9,6 м и соответственно оценить скорость их распространения, 3)показали, что волны поперечные ,4)отражаются от проводников, 5)преломляются в диэлектриках (для асфальтовой призмы массой порядка тонны при длине волны 0,6 м показатель преломления равнялся 1,69).
Позднее П.Н.Лебедев, применяя миниатюрный вибратор из тонких платиновых стерженьков, получил миллиметровые электромагнитные волны с длиной волны 4-6 мм.
П.Н.Лебедев в 1900 г. доказал существование светового давления на твердые тела, которое при средней мощности солнечного излучения, приходящего на Землю, составляет примерно 5 мкПа.
Для этого Лебедеву пришлось решить проблему получения глубокого вакуума, в котором на крутильных весах была подвешена легкая рамка из двух дисков с размерами в доли миллиметров. Один из дисков был белый, чтобы обеспечить наиболее полное отражение, а второй – черный для полного поглощения. В ходе опыта давление на белый диск было примерно в 1,5 раза больше, чем на черный диск и, из-за разницы силы давлений на диски, рамка поворачивалась.
В 1910 г. Лебедев доказал давление света и на газы. Опыты Лебедева имели огромное значения для утверждения выводов теории Максвелла о том, что свет представляет собой электромагнитные волны.