Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электричество и магнетизм (Медведь ИН).doc
Скачиваний:
54
Добавлен:
25.09.2019
Размер:
12.53 Mб
Скачать

§ 43. Граничные условия для векторов напряженности и магнитной индукции.

Рассмотрим границу двух однородных изотропных магнетиков , вдоль которой течет поверхностный ток проводимости с линейной плотностью . Пусть система находится в однородном магнитном поле. Используем теорему о полном магнитном потоке и теорему о циркуляции вектора напряженности и .

Рассмотрим на границе замкнутую поверхность в виде прямого цилиндра с (рис.101). Поток вектора магнитной индукции в этом случае: или , т.е. нормальная составляющая вектора магнитной индукции одинакова в обоих магнетиках. Так как , то .

РИС.101 РИС.102 РИС.103

Применим теорему о циркуляции вектора напряженности к очень малому прямоугольному контуру. Пусть вектор линейной плотности тока совпадает с нормалью к контуру (рис.102).

Так как контур очень узкий, то вклад в циркуляцию на боковых сторонах очень мал. Тогда: или , т.е. тангенциальная составляющая вектора напряженности, а следовательно и вектора магнитной индукции на границе раздела претерпевает скачок, обусловленный наличием поверхностных токов проводимости.

Если на границе раздела магнетиков токов проводимости нет, то и, соответственно, . На границе раздела двух магнетиков линии вектора индукции испытывают преломление, но они непрерывны .

Линии вектора напряженности преломляются по такому же закону, но терпят разрыв из-за поверхностных токов намагничивания (даже в отсутствие токов проводимости).

На рис. 103 представлены линии векторов индукции и напряженности для случая > .

На этом основана магнитная защита, т.е. использование замкнутой железной оболочки для защиты внутреннего пространства от внешнего магнитного поля. Линии поля концентрируются в самой оболочке, а в окруженном оболочкой пространстве магнитное поле значительно меньшей величины, чем внешнее поле.

Тема VIII. Нестационарное магнитное поле. § 44. Явление электромагнитной индукции.

Связь магнитного поля с протекающим в проводнике током обусловила эксперименты по возбуждению тока в проводящем контуре с помощью магнитного поля. Эта задача была решена в 1831 г. английским физиком Майклом Фарадеем.

Явление электромагнитной индукции – в замкнутом проводящем контуре при всяком изменении магнитного потока через поверхность, охватываемую контуром, возникает индукционный магнитный ток.

Суть классических опытов Фарадея представлена на рис.104-105. Магнитный поток через витки катушки, присоединенной к чувствительному гальванометру, можно изменять как взаимным перемещением постоянного магнита и катушки(рис.104а), так и перемещением одной катушки с током в магнитном поле другой катушки (рис.104б).

В обоих случаях возникает индукционный ток, но его направление определяется тем, убывает магнитный поток или возрастает. На рис.105 изменение магнитного потока через поверхность контура вызывается изменением тока в катушке с помощью реостата, включенного в цепь катушки.

РИС.104 РИС.105

Появление индукционного тока в проводнике означает, что при изменении магнитного потока через поверхность, им ограниченную, возникает фактор, который обеспечивает направленное движение зарядов. По аналогии с цепями постоянного тока можно ввести ЭДС индукции.

Фарадей установил, что ЭДС индукции совершенно не зависит от того, каким образом изменяется магнитный поток, и определяется лишь скоростью изменения магнитного потока, а в 1845 г. Ф.Э.Нейман ввел математическую запись закона электромагнитной индукции : .

Знак (-) в законе соответствует эмпирическому правилу Э.Х.Ленца: индукционный ток всегда направлен так, что создаваемое им магнитное поле противодействует изменению магнитного потока, вызвавшего появление индукционного тока.

Возникновение ЭДС индукции в контуре, перемещающимся под действием магнитного поля, было впервые обосновано Гельмгольцем в 1894 г. на основании закона сохранения энергии.

Рассмотрим замкнутый на источник контур общим сопротивлением R. Если контур неподвижен и нет преобразований в другие виды энергии, то работа источника за некоторое время, по закону Джоуля-Ленца, равна количеству теплоты выделяющейся в контуре за это время: .

Пусть в некоторый момент в пространстве, где расположен контур, возникает неоднородное магнитное поле (рис.106). В представленном случае под действием магнитного поля контур начнет втягиваться в область более сильного поля, а следовательно, за малый промежуток времени dt поток через площадь контура изменится от Ф0 до Фt.

По закону сохранения энергии: , где - работа по перемещению контура за это время. Рассчитаем величину той работы как сумму работ по перемещению малых элементов

контура под действием силы Ампера.

РИС.106

, где Фb – магнитный поток через боковую часть указанной на рисунке замкнутой поверхности. По теореме о полном магнитном потоке:

или

Тогда: , , .

Это выражение показывает, что сила тока в цепи обусловлена и источником постоянной ЭДС и ЭДС индукции, которая определяется аналогично установленному экспериментально закону электромагнитной индукции.