
- •2)Гипотеза кварков.
- •2)Почему трением электризуются только разнородные вещества?
- •3)Почему трением практически невозможно наэлектризовать проводники? §2.Закон кулона
- •§3. Напряженность электростатического поля. Полевая трактовка закона кулона. Принцип суперпозиции.
- •§4 Линии вектора напряженности. Поток вектора напряженности.
- •2)Изобразить поле двух равных по величине положительных точечных зарядов;
- •4)Изобразить качественно поле:
- •§5 Теорема остроградского-гаусса.
- •3.Используя теорему Остроградского-Гаусса, получить формулу для расчета напряженности в произвольной точке поля заряда q равномерно распределенного по поверхности сферы.
- •6 Дифференциальная форма теоремы остроградского- гаусса
- •§7 Работа сил электростатического поля по перемещению заряда. Теорема о циркуляции вектора напряженности.
- •§8. Разность потенциалов, потенциал электростатического поля.
- •§9 Связь напряженности и разности потенциалов.Эквипотенциальные поверхности.
- •§11 Поле электрического диполя.
- •Тема II. Электростатическое поле при наличии проводников. §12 электрическое поле заряженного проводника.
- •13. Электростатическая индукция.
- •§14 Электрическая емкость уединенного проводника и системы проводников.
- •Тема III. Электрическое поле при наличии диэлектриков. §15 классификация диэлектриков.
- •§ 16 Диполь в электрическом поле.
- •17. Вектор поляризации и связанные заряды.
- •§ 18. Теорема остроградского – гаусса для вектора напряженности в диэлектриках. Вектор электрического смещения.
- •§ 19. Диэлектрическая восприимчивость и диэлектрическая проницаемость.
- •§ 20 Граничные условия.
- •§ 21 Сегнетоэлектрики.
- •Тема IV. Энергия электростатического взаимодействия. §22.Энергия взаимодействия системы неподвижных точечных зарядов.
- •§23 Энергия непрерывно распределенных зарядов, энергия заряженного проводника, конденсатора.
- •§ 24 Энергия электростатического поля, энергия взаимодействия заряженных тел.
- •Тема V. Стационарный электрический ток. § 25. Сила и плотность тока.
- •26. Уравнение непрерывности.
- •§ 27. Экспериментальные законы стационарного тока.
- •§ 28 Законы ома и джоуля – ленца в дифференциальной форме.
- •§ 29. Условия существования стационарного тока. Электродвижущая сила.
- •§ 30. Поле постоянного тока.
- •§ 31. Закон ома для замкнутой цепи.
- •§ 32. Правила кирхгофа для линейных разветвленных цепей.
- •§ 33. Квазистационарные токи.
- •Тема VI. Магнитное поле стационарного тока в вакууме. § 34. Закон взаимодействия элементов тока. Вектор магнитной индукции.
- •§ 35. Закон ампера. Сила лоренца.
- •§ 36 Линии вектора магнитной индукции. Теорема о полном магнитном потоке.
- •§ 37. Теорема о циркуляции вектора магнитной индукции. Вихревой характер магнитного поля.
- •§ 38.Контур с током в магнитном поле.
- •Тема VII. Магнитное поле в веществе. § 39. Источники магнитного поля в веществе. Вектор намагничивания.
- •§ 40. Связь молекулярных токов с вектором намагничивания.
- •§ 41. Теорема о циркуляции вектора магнитной индукции в магнетиках. Напряженность магнитного поля.
- •§ 42 Магнитная восприимчивость. Магнитная проницаемость. Источники линий напряженности.
- •§ 43. Граничные условия для векторов напряженности и магнитной индукции.
- •Тема VIII. Нестационарное магнитное поле. § 44. Явление электромагнитной индукции.
- •§ 45 Природа сторонних сил при явлении электромагнитной индукции.
- •§ 46. Явление самоиндукции.
- •§ 47. Взаимная индукция.
- •§ 48 Энергия магнитного поля.
- •Тема IX. Цепи переменного тока. § 49. Колебательный контур. Свободные элетромагнитные колебания в идельном контуре.
- •§ 50 Свободные колебания в контуре с активным сопротивлением.
- •§ 51. Цепь переменного тока с различной нагрузкой.
- •§ 52 Последовательная цепь переменного тока со смешанной нагрузкой.
- •§ 53. Энергия и мощность в цепи переменного тока.
- •§ 54 Разветвленная цепь переменного тока. Метод проводимостей.
- •§ 55.Вынужденные электромагнитные колебания. Резонанс напряжений.
- •§ 56 Резонанс токов.
- •§ 57.Трехфазный ток.
- •Тема X. Магнетики § 58 магнитомеханические явления.
- •§ 59 Диамагнетизм. Ларморова прецессия.
- •§ 60 Парамагнетики.
- •Самостоятельно: §61 ферромагнетики. Тема XI. Электромагнитное поле § 62 . Обобщения максвелла. Ток смещения.
- •§ 63 Полная система уравнений максвелла. Теория максвелла и границы ее применимости.
- •§ 64. Электромагнитные волны и их свойства.
- •§ 65. Закон сохранения энергии электромагнитного поля. Поток энергии.
- •§ 66. Излучение электромагнитных волн.
- •§ 67 Экспериментальные подтверждения теории максвелла: опыты герца и лебедева.
- •Тема XII. Электропроводность веществ. § 68. Классическая теория электропроводности металлов (друде-лоренца) и ее затруднения.
- •§69.Основные понятия зонной теории проводимости твердых тел.
- •§ 70 Собственная и примесная проводимость полупроводников,
- •§ 71 Работа выхода. Контактные явления в металлах.
- •§ 72 Контакт полупроводников с различным типом проводимости.
- •§ 73 Термоэлектрические явления.
3.Используя теорему Остроградского-Гаусса, получить формулу для расчета напряженности в произвольной точке поля заряда q равномерно распределенного по поверхности сферы.
6 Дифференциальная форма теоремы остроградского- гаусса
Пусть в некоторой области пространства известна объемная плотность зарядов x,y,z и эта функция непрерывна аналогично представлению о непрерывном распределении вещества.
Рассмотрим в этом пространстве вблизи некоторой точки с координатами x,y,z настолько малый объем dV=dx·dy·dz, что объемная плотность зарядов в нем практически постоянна. Тогда заряд этого объема равен dq=(x,y,z)·dV
Найдем поток через поверхность граней перпендикулярных оси ОХ:
Аналогично можно рассчитать поток через две пары других оснований.
Тогда поток через поверхность всех граней объема:
РИС.17
-
Физический смысл дивергенции вектора напряженности в том, что она равна числу линий напряженности выходящих (входящих) из единичного объема, т.е. характеризует расходимость (сходимость) линий напряженности.
Согласно теореме Остроградского-Гаусса
в интегральной форме:
,
- дифференциальная форма теоремы
Остроградского-Гаусса.
Эта форма применима лишь при условии, если объемная плотность зарядов конечная величина, является следствием интегральной формы и констатирует, что заряды являются источниками (стоками) линий вектора напряженности.
Если ввести векторный оператор Гамильтона:
,
Можно записать :
§7 Работа сил электростатического поля по перемещению заряда. Теорема о циркуляции вектора напряженности.
Под действием сил электрического поля свободный пробный заряд начинает двигаться. Рассмотрим поле положительного точечного заряда, в котором под действием сил поля пробный заряд переместился из точки 1 в точку 2.
Проведем радиусы-векторы от заряда, создающего поле, в эти точки. Так как поле неоднородное и сила, действующая на пробный заряд, не постоянна, то найдем работу на малом перемещении:
РИС.18
Следовательно, работа сил электростатического поля не зависит от формы траектории, а определяется только начальным и конечным положением пробного заряда.
Поле, работа сил которого не зависит от траектории, называется потенциальным.
Отсюда следует, что если пробный заряд будет перемещаться по замкнутой траектории, то суммарная работа будет равна нулю:
Если поле создается несколькими точечными зарядами, то работу по перемещению пробного заряда можно рассчитать, используя принцип суперпозиции:
Следовательно, любое электростатическое поле потенциально.
Учитывая, что в этом случае:
,
Тогда при перемещении по замкнутой траектории:
Поскольку qn=0 не имеет смысла, то для любого потенциального поля:
- теорема о циркуляции вектора
напряженности.
Циркуляция вектора напряженности электростатического поля по любому замкнутому контуру равна нулю.
Следствием теоремы является то, что линии напряженности электростатического поля не могут быть замкнуты.
Теорема о циркуляции является критерием потенциальности поля.