
- •2)Гипотеза кварков.
- •2)Почему трением электризуются только разнородные вещества?
- •3)Почему трением практически невозможно наэлектризовать проводники? §2.Закон кулона
- •§3. Напряженность электростатического поля. Полевая трактовка закона кулона. Принцип суперпозиции.
- •§4 Линии вектора напряженности. Поток вектора напряженности.
- •2)Изобразить поле двух равных по величине положительных точечных зарядов;
- •4)Изобразить качественно поле:
- •§5 Теорема остроградского-гаусса.
- •3.Используя теорему Остроградского-Гаусса, получить формулу для расчета напряженности в произвольной точке поля заряда q равномерно распределенного по поверхности сферы.
- •6 Дифференциальная форма теоремы остроградского- гаусса
- •§7 Работа сил электростатического поля по перемещению заряда. Теорема о циркуляции вектора напряженности.
- •§8. Разность потенциалов, потенциал электростатического поля.
- •§9 Связь напряженности и разности потенциалов.Эквипотенциальные поверхности.
- •§11 Поле электрического диполя.
- •Тема II. Электростатическое поле при наличии проводников. §12 электрическое поле заряженного проводника.
- •13. Электростатическая индукция.
- •§14 Электрическая емкость уединенного проводника и системы проводников.
- •Тема III. Электрическое поле при наличии диэлектриков. §15 классификация диэлектриков.
- •§ 16 Диполь в электрическом поле.
- •17. Вектор поляризации и связанные заряды.
- •§ 18. Теорема остроградского – гаусса для вектора напряженности в диэлектриках. Вектор электрического смещения.
- •§ 19. Диэлектрическая восприимчивость и диэлектрическая проницаемость.
- •§ 20 Граничные условия.
- •§ 21 Сегнетоэлектрики.
- •Тема IV. Энергия электростатического взаимодействия. §22.Энергия взаимодействия системы неподвижных точечных зарядов.
- •§23 Энергия непрерывно распределенных зарядов, энергия заряженного проводника, конденсатора.
- •§ 24 Энергия электростатического поля, энергия взаимодействия заряженных тел.
- •Тема V. Стационарный электрический ток. § 25. Сила и плотность тока.
- •26. Уравнение непрерывности.
- •§ 27. Экспериментальные законы стационарного тока.
- •§ 28 Законы ома и джоуля – ленца в дифференциальной форме.
- •§ 29. Условия существования стационарного тока. Электродвижущая сила.
- •§ 30. Поле постоянного тока.
- •§ 31. Закон ома для замкнутой цепи.
- •§ 32. Правила кирхгофа для линейных разветвленных цепей.
- •§ 33. Квазистационарные токи.
- •Тема VI. Магнитное поле стационарного тока в вакууме. § 34. Закон взаимодействия элементов тока. Вектор магнитной индукции.
- •§ 35. Закон ампера. Сила лоренца.
- •§ 36 Линии вектора магнитной индукции. Теорема о полном магнитном потоке.
- •§ 37. Теорема о циркуляции вектора магнитной индукции. Вихревой характер магнитного поля.
- •§ 38.Контур с током в магнитном поле.
- •Тема VII. Магнитное поле в веществе. § 39. Источники магнитного поля в веществе. Вектор намагничивания.
- •§ 40. Связь молекулярных токов с вектором намагничивания.
- •§ 41. Теорема о циркуляции вектора магнитной индукции в магнетиках. Напряженность магнитного поля.
- •§ 42 Магнитная восприимчивость. Магнитная проницаемость. Источники линий напряженности.
- •§ 43. Граничные условия для векторов напряженности и магнитной индукции.
- •Тема VIII. Нестационарное магнитное поле. § 44. Явление электромагнитной индукции.
- •§ 45 Природа сторонних сил при явлении электромагнитной индукции.
- •§ 46. Явление самоиндукции.
- •§ 47. Взаимная индукция.
- •§ 48 Энергия магнитного поля.
- •Тема IX. Цепи переменного тока. § 49. Колебательный контур. Свободные элетромагнитные колебания в идельном контуре.
- •§ 50 Свободные колебания в контуре с активным сопротивлением.
- •§ 51. Цепь переменного тока с различной нагрузкой.
- •§ 52 Последовательная цепь переменного тока со смешанной нагрузкой.
- •§ 53. Энергия и мощность в цепи переменного тока.
- •§ 54 Разветвленная цепь переменного тока. Метод проводимостей.
- •§ 55.Вынужденные электромагнитные колебания. Резонанс напряжений.
- •§ 56 Резонанс токов.
- •§ 57.Трехфазный ток.
- •Тема X. Магнетики § 58 магнитомеханические явления.
- •§ 59 Диамагнетизм. Ларморова прецессия.
- •§ 60 Парамагнетики.
- •Самостоятельно: §61 ферромагнетики. Тема XI. Электромагнитное поле § 62 . Обобщения максвелла. Ток смещения.
- •§ 63 Полная система уравнений максвелла. Теория максвелла и границы ее применимости.
- •§ 64. Электромагнитные волны и их свойства.
- •§ 65. Закон сохранения энергии электромагнитного поля. Поток энергии.
- •§ 66. Излучение электромагнитных волн.
- •§ 67 Экспериментальные подтверждения теории максвелла: опыты герца и лебедева.
- •Тема XII. Электропроводность веществ. § 68. Классическая теория электропроводности металлов (друде-лоренца) и ее затруднения.
- •§69.Основные понятия зонной теории проводимости твердых тел.
- •§ 70 Собственная и примесная проводимость полупроводников,
- •§ 71 Работа выхода. Контактные явления в металлах.
- •§ 72 Контакт полупроводников с различным типом проводимости.
- •§ 73 Термоэлектрические явления.
§ 46. Явление самоиндукции.
Как уже обсуждалось, явление электромагнитной индукции наблюдается при всяком изменении магнитного потока независимо от причины, вызвавшей это изменение.
Если в некотором контуре течет изменяющийся во времени ток, то изменяется магнитное поле этого тока, а, следовательно, магнитный поток через поверхность, ограниченную контуром.
Возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока называется явлением самоиндукции.
Магнитный поток, обусловленный собственным током контура (сцепленный с контуром), пропорционален магнитной индукции, которая, в свою очередь, по закону Био-Савара-Лапласа, пропорциональна току.
, где L –коэффициент
самоиндукции или индуктивность,
«геометрическая» характеристика
проводника, так как зависит от его формы
и размеров, а также от магнитных свойств
среды.
=1
Гн=1Вб/1А.
При изменении силы тока изменяется и сцепленный с контуром поток, а следовательно возникает ЭДС самоиндукции. Если контур жесткий, ферромагнетики отсутствуют, распределение и магнитные свойства вещества среды неизменны, индуктивность L=const.
- знак (-) отражает тот факт, что наличие
индуктивности в цепи приводит к замедлению
изменения тока в ней.
Рассчитаем индуктивность настолько
длинного соленоида, что поле внутри его
можно считать однородным, а краевыми
эффектами пренебречь. Пусть вся длина
соленоида L, общее число
витков N, площадь
поперечного сечения S,
магнитная проницаемость магнетика,
заполняющего объем соленоида
.
Магнитный поток через все витки соленоида
и, следовательно, индуктивность равна
,
где V – соленоида.
Индуктивными свойствами обладают любые реальные проводники, но величина индуктивности наибольшая для соленоида, поэтому явление самоиндукции наиболее сильно проявляется в цепях, содержащих эти элементы.
Замкнем цепь, содержащую источник постоянной ЭДС, соленоид и сопротивление (рис.113).
Как уже обсуждалось, ЭДС индукции
появляется при любом изменении магнитного
потока, независимо от причины, вызывающей
это изменение. Тогда, в соответствии с
законом сохранения энергии, ток в цепи
определяется как источником, так и ЭДС
самоиндукции:
,
.
Введем новую переменную
,
.
Тогда
и
.
Интегрируем, учитывая, что при t=0
I=0 U=-
,
а установившееся значение тока
.
,
,
,
.
Следовательно, ток в цепи устанавливается не мгновенно, а возрастая по экспоненциальному закону до стационарного значения (рис.114).
РИС.113 РИС.114 РИС.115
При размыкании этой цепи сила тока также, по экспоненциальному закону, убывает в течение некоторого времени:
,
где
равно, для этой цепи, тому же значению
и называется временем релаксации.
При большой величине индуктивности и малом времени размыкания цепи токи самоиндукции могут достигать очень большой величины, поэтому существует термин «экстратоки» самоиндукции.