Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на билеты 2 семестр.docx
Скачиваний:
10
Добавлен:
25.09.2019
Размер:
391.02 Кб
Скачать

Величина тока на участке цепи прямо пропорциональна напряжению приложенному к этому участку и обратно пропорциональна его сопротивлению.

 

 I- величина (сила) тока

U- напряжение R - сопротивление

из закона Ома получаем

37.: Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Электрический ток возникает в замкнутой цепи под действием источника электрической энергии (источника тока).

ЭДС-Источник электрической энергии представляет собой прибор, преобразующий какой-либо вид энергии в электрическую. Он создает и поддерживает на своих зажимах разность потенциалов. Таким образом в проводящей среде создается электрическое поле, которое и вызывает упорядоченное, направленное движение носителей электрических зарядов, т. е. электрический ток.

Происхождение электрического тока сопровождается непрерывным расходованием энергии на преодоление сопротивления. Эту энергию доставляет источник электрической энергии, в котором происходит процесс преобразования механической, химической, тепловой или других видов энергии в электрическую.

Способность источника электрической энергии создавать и поддерживать на своих зажимах определенную разность потенциалов называется электродвижущей силой, сокращенно э. Д. С.

Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи.

Если источник энергии, совершая работу A, обеспечивает перенос по всей замкнутой цепи заряда q, то его электродвижущая сила (Е) будет равна

 

 За единицу измерения электродвижущей силы в системе СИ принимается вольт (в).

38. Электрический ток нагревает проводник. Это явление нам хорошо известно. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле:     А = U·I·t.

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцом[1].

В словесной формулировке звучит следующим образом[2]

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:

где   — мощность выделения тепла в единице объёма,   — плотность электрического тока,   — напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

В математической форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dtI — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

39. Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры.

 Собственной проводимостью полупроводников называется проводимость, обусловленная движением под действием электрического поля одинакового числа свободных электронов и дырок, образовавшихся вследствие перехода электронов полупроводника из валентной зоны в зону проводимости. В идеальном полупроводнике при собственной проводимости концентрации электронов (ni) и дырок (pi) равны и много меньше числа уровней в валентной зоне и зоне проводимости. Поэтому свободные электроны занимают уровни вблизи дна зоны проводимости Ec, а свободные дырки - вблизи потолка валентной зоны Ev (рис. 1). При этом:

ni = pi = A exp(-DE/2kT),  (1)

где A=4,82Ч1015T 3/2(mn*mp*/m2)3/4;

mn*, mp* - эффективные массы электрона и дырки;

m - масса электрона;

k - постоянная Больцмана;

DE - ширина запрещенной зоны полупроводника;

T - абсолютная температура (дыркам приписывается эффективная масса mp, равная по абсолютной величине эффективной массе того электрона, который занял бы это валентное состояние, но с противоположным знаком; эффективная масса электрона в валентной зоне вблизи Ev отрицательна).

 Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием в полупроводнике донорных или акцепторныхпримесей.

Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.

Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

Полупроводниковые приборы, ППП — широкий класс электронных приборов, изготавливаемых из полупроводников.

К полупроводниковым приборам относятся:

  • Интегральные схемы (микросхемы)

  • Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),

  • Тиристоры, фототиристоры,

  • Транзисторы,

  • Приборы с зарядовой связью,

  • Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),

  • Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры,электролюминесцентные излучатели),

  • Терморезисторы, датчики Холла.

40. Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающиемагнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Постоянный магнит — изделие различной формы из магнитотвёрдого материала с высокой остаточной магнитной индукцией, сохраняющее состояние намагниченности в течение длительного времени. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Для определения направления силовых линий можно воспользоваться небольшими магнитными стрелками. Расположение силовых линий магнитного поля прямолинейного тока дает возможность установить правило, по которому всегда легко определить направление силовых линий магнитного поля тока. Правило это называется правилом буравчика или правилом винта: если ввинчивать буравчик по направлению тока, то направление движения рукоятки буравчика укажет направление магнитных силовых линий. Магнитное поле тока, как и магнитное поле магнита, проявляется очень заметно только вблизи проводника. С удалением же от последнего поле становится все менее и менее заметным.

41. Зако́н Ампе́ра  — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельныепроводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила  , с которой магнитное поле действует на элемент объёма   проводника с током плотности  , находящегося в магнитном поле с индукцией  :

.

Если ток течёт по тонкому проводнику, то  , где   — «элемент длины» проводника — вектор, по модулю равный   и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Сила  , с которой магнитное поле действует на элемент   проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока   в проводнике и векторному произведению элемента длины   проводника на магнитную индукцию  :

.

Направление силы   определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила правой руки.

Модуль силы Ампера можно найти по формуле:

,

где   — угол между векторами магнитной индукции и тока.

Сила   максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции ( ):

.

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора, на маломощных двигателях постоянного тока, очень часто используются постоянные магниты.

Ротор может быть:

  • короткозамкнутым;

  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя, сейчас эти двигатели редкость, так как на рынке появились преобразователи частоты, ранее же они очень часто использовались в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора), или же работающего по этому же принципу, так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель, это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая болгарка, если выкинуть электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений — меры, преобразователи, комплексные установки.

Амперметр переменного тока

Вольтметр переменного тока 

Омметр

Мультиметр ( тестер )

42. Магни́тная инду́кция   — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какойсилой   магнитное поле действует на заряд  , движущийся со скоростью  .

Более конкретно,   — это такой вектор, что сила Лоренца  , действующая со стороны магнитного поля[1] на заряд  , движущийся со скоростью  , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора   перпендикулярно им обоим и направлено по правилу буравчика).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведениюсилы тока в рамке на её площадь.

Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)

1 Тл = 104 Гс

Магни́тный пото́к — поток   как интеграл вектора магнитной индукции   через конечную поверхность  . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где   — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Закон Фарадея

Согласно закону электромагнитной индукции Фарадея (в СИ):

где

 — электродвижущая сила, действующая вдоль произвольно выбранного контура,

   — магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где

 — электродвижущая сила,

 — число витков,

 — магнитный поток через один виток,

 — потокосцепление катушки.

43. Причина возникновения электрического тока в неподвижном проводнике – электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.  Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Ленца правило, определяет направление индукционных токов, т. е. токов, возникающих вследствие индукции электромагнитной; является следствием закона сохранения энергии. Л. П. установлено в 1833 Э. X. Ленцем. Согласно Л. п., возникающий в замкнутом контуре индукционный ток направлен так, что создаваемый им поток магнитной индукции через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток. Так, например, индукционный ток в витке, помещенном в магнитное поле В, которое направлено перпендикулярно плоскости витка (рис.) от наблюдателя (т. е. за плоскость чертежа), направлен против часовой стрелки, если поле возрастает во времени (а), и по часовой стрелке, если поле убывает

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре[1] при изменении тока, протекающего по контуру.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока  :

.

Коэффициент пропорциональности   называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4].

В формуле

 — магнитный поток,   — ток в контуре,   — индуктивность.

  • Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]:

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]:

.