Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИОЛОГИЯ - ГЛАЗУНОВА.doc
Скачиваний:
129
Добавлен:
25.09.2019
Размер:
5.95 Mб
Скачать

Ферменты

Ферменты – биологические катализаторы (энзимы). В их присутствии биохимические процессы в клетке протекают быстрее в тысячи раз. Во всех клетках имеются сложные наборы ферментов (ферментные системы). Они создают возможность таких химических превращений, для которых в организме потребовались бы высокие температуры или сильные химические реактивы. Например, сахар, крахмал могут долго храниться вне организма, т. к. устойчивы к кислороду. Они сгорают с образованием воды и углекислого газа лишь при очень высоких температурах. А в организме они расщепляются быстро при температуре 36 С благодаря ферментам.

Ферменты обладают специфическим действием. Многие из них действуют только на одно вещество (лактаза – на лактозу, молочный сахар); другие действуют на определенные связи (липаза – на любые жиры, расщепляя их до воды и глицерина).

Все ферменты по химической природе является белками. Работают при определенной рН и t. При высоких температурах они денатурируют.

Обмен веществ в клетке

Обмен веществ – это совокупность реакций биосинтеза (ассимиляции) и распада (диссимиляции), лежащих в основе жизнедеятельности организма и обеспечивающих его взаимосвязь со средой обитания.

Ассисмиляция – пластический обмен – это совокупность реакций синтеза, направленных на образование структурных частей клеток и тканей. К ней относятся биосинтез белка, фотосинтез, синтез жиров и углеводов.

Биосинтез белка – одна из наиболее важных и характерных функций живой клетки. Информацию о структуре белковой молекулы содержит ген. Ген – это материальный носитель наследственной информации. В химическом отношении ген есть участок ДНК, который содержит информацию о последовательности аминокислот в определенной белковой молекуле. Его роль в биосинтезе белка заключается в хранении и воспроизведении наследственной информации. Он является хранителем эволюционных достижений жизни, зафиксированных языком генетического кода (кода ДНК).

Генетический код – это определенное сочетание нуклеотидов и последовательность их расположения в молекуле ДНК, несущих информацию о структуре белка. Генетический код разных организмов обладает рядом общих свойств: триплетность, специфичность, избыточность, универсальность, отсутствие запятых, неперекрываемость, коллинеарность. Единицей генетического кода является триплет (кодон). Триплет – это три нуклеотида, следующих друг за другом и имеющих определенный порядок азотистых оснований. Триплет кодирует место одной аминокислоты в полипептидной цепочке. В настоящее время установлены кодоны для всех известных аминокислот. Специфичность генетического кода заключается в том, что каждый кодон кодирует только одну аминокислоту. Избыточность (вырожденность) выражается в том, что генетический код включает всевозможные сочетания трех (из четырех) азотистих оснований. Таких сочетаний может быть 43=64, в то время как кодируется 21 аминокислота. В результате некоторые аминокислоты кодируются двумя, тремя и даже шестью триплетами. Избыточность генетического кода имеет значение для повышения надежности передачи генетической информации. Универсальность – код универсален для всех живых организмов – от бактерий до млекопитающих. Триплеты генетического кода следуют друг за другом без перерыва – без запятых. Кодовые триплеты никогда не перекрываются, т. е. каждый нуклеотид входит в состав только одного триплета при заданной рамке считывания. Азотистое основание одного триплета не может одновременно входить в состав другого. Коллинеарность – это свойство, осуществляющее такую последовательность аминокислот в белковой молекуле, в какой соответствующие кодоны расположены в гене. В длинной молекуле ДНК, состоящей из миллионов нуклеотидных пар, записана информация о последовательности аминокислот в сотнях различных белков. Понятно, что эта информация о первичной структуре каждого белка должна быть разграничена. И действительно, существуют триплеты – инициаторы синтеза белковой молекулы (промоторы) и триплеты, которые прекращают синтез (терминаторы), т. е. служат своеобразными «точками» генетического кода.

Поскольку ДНК находится в ядре клетки, а синтез белков идет на рибосомах в цитоплазме, существует посредник, передающий информацию от ДНК на рибосомы. Таким посредником является иРНК, на которую нуклеотидная последовательность переписывается в точном соответствии с таковой на ДНК по принципу комплементарности. Этот процесс получил название транскрипции и протекает как реакция матричного синтеза (pис. 9). Процесс самоудвоения идет поэтапно: сначала с помощью ферментов разрываются водородные связи между азотистыми основаниями в молекуле ДНК. В результате этого одна нить ДНК отходит от другой, затем каждая из них синтезирует новую путем присоединения комплементарных нуклеотидов, находящихся в цитоплазме. Воспроизводится точная копия «материнской» молекулы ДНК, т. е. каждая нить ДНК служит матрицей. Поэтому в живых клетках новые молекулы ДНК имеют ту же структуру, что и первоначальные.

Биосинтезу белка предшествует матричный синтез иРНК на нити ДНК. Для этого используется фермент РНК-полимераза и энергия. ДНК передает на нить иРНК свой порядок чередования нуклеотидов по принципу матричного синтеза. Информационная РНК-однонитевая молекула и значительно короче ДНК. Кроме того, в ее нуклеотид входит сахар-рибоза, одно из четырех азотистых оснований – аденин, гуанин, цитозин, урацил, остаток фосфорной кислоты. Она переходит в цитоплазму, где на нее нанизываются рибосомы, сюда же с помощью тРНК приносятся аминокислоты.

Синтез белка – сложный многоступенчатый процесс, в котором участвуют ДНК, иРНК, тРНК, рибосомы и ферменты (pис. 10). Сначала аминокислоты активируются с помощью ферментов и присоединяются к тРНК. Затем на рибосоме идет сборка белковой молекулы – соединение аминокислот в таком порядке, в каком чередование нуклеотидов ДНК передано на иРНК. Этот этап называют трансляцией. После установки первой аминокислоты рибосома продвигается на один триплет, а тРНК перемещается в цитоплазму. Затем на нить иРНК надвигается очередная рибосома, а из цитоплазмы непрерывным потоком подходят тРНК с аминокислотами, которые соединяются в полипептидную цепь. Достигнув концевого участка иРНК, комплекс рибосом отделяется, и в цитоплазму клетки выходит молекула белка. Завершив синтез одной молекулы белка, рибосомы могут принять участие в синтезе следующих белковых молекул.

В клетках растительных и животных организмов белки непрерывно обновляются. Интенсивность синтеза тех или иных специфических белков определяется активностью соответствующих генов, с которых считывается информация на и-РНК. Следует отметить, что не все гены функционируют одновременно: активность проявляют лишь те, которые кодируют информацию о структуре белков, необходимых для жизнедеятельности организма в данный момент. Биосинтез зависит также от активности ферментов, катализирующих процессы транскрипции и трансляции, от наличия свободной энергии в виде АТФ, аминокислот и других факторов.

Фотосинтез – первичный процесс превращения энергии солнечных лучей света в энергию химических связей, протекающий в зеленых листьях растений. Это происходит благодаря наличию в хлоропластах фотосинтезирующего пигмента – хлорофилла и каратиноидов (каротина, ксантофилла). В частности, являясь высокоактивным веществом, хлорофилл осуществляет поглощение света, первичное запасание энергии и дальнейшее ее преобразование в химическую энергию. Суммарно процесс фотосинтеза можно записать в следующем виде:

свет

6СО2+6Н2О ———С6Н12О6+6О2

Различают световую и темновую фазы фотосинтеэа.

Световая фаза начинается с поглощения кванта света молекулой хлорофилла. При этом один из электронов молекулы переходит на более высокую орбиту, где присоединяется к иону водорода (Н+) и восстанавливает его до протона (Н). Последний соединяется с никотинамидадениндинуклеофосфатом (НАДФ) – переносчиком водорода и восстанавливает его до НАДФ.Н2. Происходит процесс разложения воды под влиянием света (фотолиз). Ион гидроксила (ОН-) отдает свой электрон и превращается в радикал (ОН), который, соединяясь с другими радикалами, образует воду и свободный кислород. Электрон от гидроксила возвращается в молекулу хлорофилла и заполняет место ушедшего электрона. При этом выделяется энергия для синтеза АТФ. Таким образом, результатом световой фазы фотосинтеза является образование АТФ, выделение кислорода и восстановление НАДФ до НАДФ.Н2.

В период темновой фазы фотосинтеза происходят сложные ферментативные реакции, в основе которых лежит восстановление молекул углекислого газа до органических соединений, осуществляемое при участии продуктов световых реакций. Это происходит следующим образом. Углекислый газ, поступая из атмосферы в листья через устьица, связывается особым веществом – акцептором (например, пятиуглеродным сахаром – рибулозодифосфатом), и в результате образуется нестойкое вещество, распадающееся на две молекулы фосфороглицериновой кислоты. Последние восстанавливаются с помощью продуктов световых реакций-НАДФ.Н2 и АТФ. В конечном итоге через ряд промежуточных соединений образуются углеводы (моно-, ди-, полисахариды) и другие органические соединения (белки, жиры, органические кислоты). Урожайность растений в значительной степени опpеделяется продуктивностью фотосинтеза, которая зависит от влияния целого комплекса внешних и внутренних (генов) факторов. Оптимальными условиями для фотосинтеза являются: оптимальная освещенность, достаточная увлажненность почвы, нормальное содержание углекислого газа в воздухе, достаточное минеральное питание растений.

Энергетический обмен – диссимиляция – совокупность реакций распада (в том числе гликолиз, брожение, дыхание), сопровождающихся выделением энергии. Он проходит в три этапа.

Первый этап – подготовительный – протекает в цитоплазме клеток растений, простейших, в пищеварительном тракте животных и человека. При этом питательные вещества под влиянием пищеварительных ферментов расщепляются до мономеров: белки – до аминокислот, углеводы – до моносахаридов, липиды – до жирных кислот, спиртов и альдегидов, нуклеиновые кислоты – до нуклеотидов. В результате образуется небольшое количество энергии, которая рассеивается в виде тепла. На этом этапе синтеза АТФ не происходит.

Второй этап – анаэробный – протекает в цитоплазме клеток и сводится к следующему. Мономеры, образовавшиеся на первом этапе, подвергаются дальнейшему расщеплению без участия кислорода с выделением энергии, часть которой идет на синтез АТФ. Например, под действием ферментов одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты. При этом из аденозиндифосфата и фосфорной кислоты синтезируются две молекулы АТФ. В растительных клетках и в некоторых дрожжевых грибах распад глюкозы идет путем спиртового брожения.

Третий этап – аэробный – обеспечивает последующее расщепление органических веществ до конечных продуктов с участием кислорода и происходит в митохондриях. В результате дальнейшего окисления пировиноградной кислоты образуются диокись углерода и вода. При этом выделяется энергия, которая аккумулируется в виде 36 молекул АТФ.

Таким образом, при расщеплении одной молекулы глюкозы образуется 38 молекул АТФ, которая быстро восстанавливается в клетке. Например, у человека каждая молекула АТФ расщепляется и вновь синтезируется 2400 раз в сутки, т. е. средняя продолжительность жизни АТФ менее минуты.

При диссимиляции расщепляются не только углеводы, но и продукты распада белков, жиров и других сложных соединений. Так, аминокислоты расщепляются до диоксида углерода и воды и даже до азотсодержащих веществ, идущих у позвоночных на синтез мочевины. Диссимиляция обычно осуществляется в результате гидролизических и окислительных процессов и протекает как при отсутствии кислорода (анаэробный гликолиз, брожение), так и при его участии (аэробный путь – дыхание).