
- •1. Основные понятия кинематики.
- •2. Скорость.
- •3. Ускорение.
- •4. Равномерное прямолинейное движение.
- •5. Равнопеременное прямолинейное движение.
- •6. Кинематика вращательного движения твёрдого тела.
- •7. Понятие силы.
- •8. Законы Ньютона.
- •9. Законы сохранения и изменения импульса.
- •10. Работа сил. Консервативные и неконсервативные силы.
- •11. Мощность.
- •12. Кинетическая и потенциальная энергия.
- •13. Закон сохранения механической энергии.
- •14. Теоремы об изменении энергии.
- •15. Закон всемирного тяготения.
- •16. Упругий и неупругий удары.
- •17. Момент инерции.
- •18. Момент силы.
- •19. Основной закон динамики вращательного движения.
- •20. Момент импульса.
- •21. Закон сохранения момента импульса.
- •22. Кинетическая энергия вращательного движения тел.
- •23. Уравнения динамики вращательного и поступательного движений.
- •24. Основные положения молекулярно-кинетической теории.
- •25. Уравнение состояния идеального газа.
- •26. Газовые законы для изопроцессов.
- •27. Работа газа.
- •28. Внутренняя энергия газа. Понятие степеней свободы.
- •29. Первое начало термодинамики.
- •30. Теплоёмкость.
- •31. Закон Кулона.
- •32. Напряжённость электростатического поля.
- •33. Принцип суперпозиции электростатических полей.
- •34. Поток вектора напряжённости.
- •35. Расчёт полей с помощью теоремы Гаусса.
- •36. Работа сил электростатического поля. Условие потенциальности электростатического поля.
- •37. Потенциал электростатического поля. Принцип суперпозиции. Связь напряжённости и потенциала электростатического поля.
- •38. Электрический ток. Сила и плотность тока.
- •39. Закон Ома в дифференциальной форме.
- •40. Эдс. Напряжение. Закон Ома для неоднородного участка цепи.
- •41. Работа и мощность тока. Закон Джоуля-Ленца.
- •42. Правила Кирхгофа.
- •43. Магнитное поле. Закон Био-Савара-Лапласа.
- •44. Сила Ампера. Взаимодействие параллельных проводников.
- •45. Сила Лоренца.
- •46. Закон электромагнитной индукции. Магнитный поток. Правило Ленца.
- •47. Явление самоиндукции. Индуктивность контура.
- •48. Явление взаимоиндукции. Взаимная индуктивность.
- •49. Механические колебания.
- •50. Упругие волны.
- •51. Стоячие волны.
- •52. Интерференция света.
- •53. Кольца Ньютона в отражённом свете. Радиус светлых колец.
- •54. Кольца Ньютона в отражённом свете. Радиус тёмных колец.
- •55. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •56. Дифракция на щели.
- •57. Дифракционная решётка.
- •58. Дифракционная решётка, как спектральный прибор.
30. Теплоёмкость.
Теплоёмкость тела (обычно обозначается
латинской буквой C) — физическая величина,
определяющая отношение бесконечно
малого количества теплоты δQ, полученного
телом, к соответствующему приращению
его температуры δT:
Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.
Массовая теплоёмкость (С) — это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры.
Объёмная теплоёмкость (С′) — это
количество теплоты, которое необходимо
подвести к единице объёма вещества,
чтобы нагреть его на единицу температуры.
Молярная теплоемкость – кол-во тепла,
которое необходимо сообщить телу, чтобы
повысить его температуру на 1К.
- удельная теплоемкость.
V=const:
P=const:
- формула соотношения Майера.
Связь со степенями свободы:
31. Закон Кулона.
Закон взаимодействия электрических зарядов был установлен в 1785 г. Шарлем Кулоном (Coulomb Sh., 1736-1806). Кулон измерял силу взаимодействия двух небольших заряженных шариков в зависимости от величины зарядов и расстояния между ними с помощью специально сконструированных им крутильных весов. В результате своих опытов Кулон установил, что сила взаимодействия двух точечных зарядов прямо пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними, при этом направление действия силы совпадает с прямой, проходящей через оба заряда. В общепринятой сейчас Международной системе единиц измерения (СИ) закон Кулона записывается, следовательно, в виде:
32. Напряжённость электростатического поля.
1.5
Поместив пробный заряд qпр на некотором
расстоянии r от заряда q (рис.1.5), мы
обнаружим, что на него действует сила,
величина которой зависит от величины
взятого пробного заряда qпр. Легко,
однако, видеть, что для всех пробных
зарядов отношение F/ qпр будет одно и
тоже и зависит лишь от величин q и r ,
определяющих поле заряда q в данной
точке r. Естественно, поэтому, принять
это отношение за величину, характеризующую
«интенсивность» или, как говорят,
напряженность электрического поля (в
данном случае поля точечного заряда):
.
Таким образом, напряженность электрического поля является его силовой характеристикой. Численно она равна силе, действующий на пробный заряд qпр = +1, помещенный в данное поле.
Напряженность поля – вектор. Его
направление совпадает с направлением
вектора силы, действующей на точечный
заряд, помещенный в это поле. Следовательно,
если в электрическое поле напряженностью
поместить точечный заряд q, то на него
будет действовать сила:
.
Электрическое поле удобно изображать с помощью силовых линий. Силовая линия – линия, вектор касательной к которой в каждой точке совпадает с направлением вектора напряженности электрического поля в этой точке. Принято считать, что силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность) и нигде не прерываются.