
- •2. Позиционная и нормализованная формы записи чисел. Значащие и верные цифры позиционной системы.
- •3. Ошибки округления чисел. Распространение ошибок округления в арифметических операциях. Абсолютная и относительная погрешность суммы, разности, произведения и частного.
- •Определение 2. Величина называется абсолютной погрешностью представления числа X с помощью числа .
- •4. Близость в метрическом и нормированном пространствах. Расстояние и норма, их определения и свойства. Основные классы функций:
- •5. Постановка задачи интерполяции. Интерполяционный многочлен Лагранжа. Теорема о погрешности интерполяции. Единственность многочлена Лагранжа.
- •6. Интерполяция на равномерной сетке. Конечные разности и их свойства.
- •1) Докажем, что операторы и перестановочные. .
- •7. Интерполяционный многочлен Ньютона. Построение и оценка погрешности.
- •8. Ортогональность в гильбертовом пространстве. Многочлены Чебышёва. Определение, построение, свойства.
- •9. Применение многочленов Чебышёва к задаче интерполяции. Теорема об оптимальном выборе узлов.
- •10. Среднеквадратичное приближение функций. Постановка задачи, теорема о существовании и единственности.
- •20. Классические ортогональные многочлены. Построение ортогональных многочленов на каноническом отрезке [-1,1].
- •11. Численное интегрирование. Использование функциональных рядов.
- •12. Квадратурная формула на основе интерполяции. Формулы дл коэффициентов и остаточного члена.
- •13. Базовые квадратурные формулы прямоугольников, трапеций и парабол. Формула теоретической погрешности.
- •14. Обобщенные квадратурные формулы трапеции и Симпсона (формулы Ньютона-Котеса).
- •15. Теоретич. Оценки погрешности обобщённых формул трапеции и Симпсона.
- •16. Правило Рунге практической оценки погрешности квадратурной формулы Симпсона.
- •17. Общие свойства полиномов ортогональных с весом.
- •18. Алгебраическая степень точности квадратурной формулы. Квадратурные формулы Гаусса-Кристоффеля.
- •19. Теорема о необходимых и достаточных условиях выбора узлов в формулах Гаусса-Кристоффеля.
- •21. Принцип сжатых отображений. Теорема о неподвижной точке. Доказать единственность неподвижной точки. Следствия теоремы для банаховых пространств и пространства
- •22. Метод простых итераций решения функциональных уравнений и систем. Условия сходимости.
- •23. Метод Ньютона. Геометрическая интерпретация. Теорема о сходимости метода в одномерном случае.
- •24. Метод Ньютона в многомерном случае. Организация итерационного алгоритма.
- •25. Численные методы решения слау. Прямые и итерационные методы, общие понятия.
- •26. Нормы вещественных квадратных матриц. Спектральные свойства матриц.
- •27. Обусловленность матриц и систем лау. Число обусловленности в спектральной норме.
- •28. Метод итераций для слау специального вида. Теорема о достаточных условия сходимости.
- •29. Спектральный признак сходимости.(теорема о необх. И дост. Усл. Сходимости)
- •30.Стационарные итерационные процедуры. Приведение слау к системе специального вида.
- •31. Метод простых итераций Ричардсона. Условия сходимости.
- •32. Теорема о выборе ускоряющего множителя в методе Ричардсона.
- •33. Метод Якоби. Организация алгоритма. Теорема о достаточных условиях сходимости.
- •34. Метод Зейделя как ускорение метода Якоби. Организация алгоритма. Теорема об условиях сходимости.
- •35. Метод последовательной верхней релаксации. Задача выбора ускоряющего множителя.
- •36. Численное дифференцирование на основе интерполяции.
- •37. Численное дифференцирование на равномерной сетке, основанное на тэйлоровском разложении. Теорема об аппроксимации первой и второй производной.
- •38. Задача Коши. Постановка задачи. Сведение к системе для уравнения n-ого порядка.
- •39. Метод Эйлера. Алгоритм, геометрическая интерпретация, порядок точности.
- •40. Методы Рунге-Кутты повышенной точности. Метод «предиктор-корректор» и метод «средней точки».
- •41. Общая постановка краевой задачи для решения оду второго порядка. Классификация граничных условий.
- •42. Метод «стрельбы» решения краевой задачи с граничными условиями первого рода.
- •43. Метод конечных разностей решения линейной краевой задачи для оду второго порядка.
- •44. Каноническая разностная схема для линейного оду второго порядка, имеющая порядок аппроксимации .
- •45. Устойчивость разностных схем. Спектральный признак устойчивости для уравнений с постоянными коэффициентами. Примеры для оду и уравнений в частных производных.
4. Близость в метрическом и нормированном пространствах. Расстояние и норма, их определения и свойства. Основные классы функций:
и
.
Определение 1.
Множество
X
элементов произвольной природы (не
обязательно числовое множество)
называется метрическим
пространством,
если любой паре элементов
поставлено в соответствие число
,
(метрика, или расстояние) в соответствии
с аксиомами:
А1.
тогда и только тогда, когда x=y.
А2.
.
А3.
– неравенство треугольника.
Определение 2.
Говорят, что
последовательность элементов
метрического пространства X
сходится
к элементу
,
если
.
Определение 3.
Последовательность
элементов метрического пространства
X
называется фундаментальной,
если
.
Определение 4. Метрическое пространство X называется полным, если любая фундаментальная последовательность его элементов сходится к некоторому элементу этого пространства.
Замечания.
Не любое метрическое пространство является полным.
Например, множество
всех рациональных чисел с метрикой
не является полным,
т.к. последовательность
- фундаментальная, но
- иррациональное число.
Сходимость большинства итерационных процессов удается доказать только в полном метрическом пространстве, следовательно, полнота играет важную роль в числовом анализе.
Определение 5. Множество X называется нормированным линейным пространством, если
оно является линейным пространством, т.е. в нем определены операции сложения элементов и умножения элемента на число с известными свойствами.
Любому элементу
поставлено в соответствие число
(норма x), удовлетворяющее аксиомам:
А1.
,
А2.
А3.
–
неравенство треугольника.
Замечание. Любое
нормированное линейное пространство
X
можно считать метрическим, если ввести
метрику по формуле
,
(1)
Если последовательность нормированного пространства X сходится в смысле метрики (1), то говорят о сходимости по норме пространства X.
Нетрудно убедиться, что для метрики (1) выполняются все аксиомы метрики.
Приведем некоторые примеры классов функций и соответствующих линейных пространств.
Пример 5. Множество
всех функций, заданных на отрезке [a,b]
и имеющих на нем непрерывные производные
до k
-го порядка включительно, называется
классом
.
Пример 6. При
k=0
получаем класс
- множество непрерывных на отрезке [a,b]
функций. Если на
ввести норму по формуле
,
(2)
то получим линейное
нормированное пространство C[a,b]
(операции сложения и умножения на число
вводятся обычным образом f+g=f(x)+g(x),
).
Аксиомы А1, А2 – очевидно, выполняются. В справедливости А3 нетрудно также убедиться с помощью свойств модуля и теоремы Вейерштрасса.
Замечания.
Норму в классе
можно ввести не единственным образом.
Например,
.
Сходимость
последовательности
по норме (2) – это равномерная сходимость:
.
Пространство C[a,b] с нормой (2) является полным в силу теоремы мат. анализа: равномерно сходящаяся последовательность в замкнутой области сходится к непрерывной функции.
Пример 7. Множество
всех функций, p-я
степень модуля которых интегрируема
на отрезке [a,b],
называется линейным нормированным
пространством
,
если на нем введена норма по формуле
.
(3)
Сходимость по норме (3) называется сходимостью в среднем (при p=2 - среднеквадратичная сходимость).
Замечание. Пусть
,
тогда
.
,
.
Отсюда
следует, что из сходимости последовательности
по норме C
следует ее сходимость по норме
,
но не наоборот.