
- •2. Позиционная и нормализованная формы записи чисел. Значащие и верные цифры позиционной системы.
- •3. Ошибки округления чисел. Распространение ошибок округления в арифметических операциях. Абсолютная и относительная погрешность суммы, разности, произведения и частного.
- •Определение 2. Величина называется абсолютной погрешностью представления числа X с помощью числа .
- •4. Близость в метрическом и нормированном пространствах. Расстояние и норма, их определения и свойства. Основные классы функций:
- •5. Постановка задачи интерполяции. Интерполяционный многочлен Лагранжа. Теорема о погрешности интерполяции. Единственность многочлена Лагранжа.
- •6. Интерполяция на равномерной сетке. Конечные разности и их свойства.
- •1) Докажем, что операторы и перестановочные. .
- •7. Интерполяционный многочлен Ньютона. Построение и оценка погрешности.
- •8. Ортогональность в гильбертовом пространстве. Многочлены Чебышёва. Определение, построение, свойства.
- •9. Применение многочленов Чебышёва к задаче интерполяции. Теорема об оптимальном выборе узлов.
- •10. Среднеквадратичное приближение функций. Постановка задачи, теорема о существовании и единственности.
- •20. Классические ортогональные многочлены. Построение ортогональных многочленов на каноническом отрезке [-1,1].
- •11. Численное интегрирование. Использование функциональных рядов.
- •12. Квадратурная формула на основе интерполяции. Формулы дл коэффициентов и остаточного члена.
- •13. Базовые квадратурные формулы прямоугольников, трапеций и парабол. Формула теоретической погрешности.
- •14. Обобщенные квадратурные формулы трапеции и Симпсона (формулы Ньютона-Котеса).
- •15. Теоретич. Оценки погрешности обобщённых формул трапеции и Симпсона.
- •16. Правило Рунге практической оценки погрешности квадратурной формулы Симпсона.
- •17. Общие свойства полиномов ортогональных с весом.
- •18. Алгебраическая степень точности квадратурной формулы. Квадратурные формулы Гаусса-Кристоффеля.
- •19. Теорема о необходимых и достаточных условиях выбора узлов в формулах Гаусса-Кристоффеля.
- •21. Принцип сжатых отображений. Теорема о неподвижной точке. Доказать единственность неподвижной точки. Следствия теоремы для банаховых пространств и пространства
- •22. Метод простых итераций решения функциональных уравнений и систем. Условия сходимости.
- •23. Метод Ньютона. Геометрическая интерпретация. Теорема о сходимости метода в одномерном случае.
- •24. Метод Ньютона в многомерном случае. Организация итерационного алгоритма.
- •25. Численные методы решения слау. Прямые и итерационные методы, общие понятия.
- •26. Нормы вещественных квадратных матриц. Спектральные свойства матриц.
- •27. Обусловленность матриц и систем лау. Число обусловленности в спектральной норме.
- •28. Метод итераций для слау специального вида. Теорема о достаточных условия сходимости.
- •29. Спектральный признак сходимости.(теорема о необх. И дост. Усл. Сходимости)
- •30.Стационарные итерационные процедуры. Приведение слау к системе специального вида.
- •31. Метод простых итераций Ричардсона. Условия сходимости.
- •32. Теорема о выборе ускоряющего множителя в методе Ричардсона.
- •33. Метод Якоби. Организация алгоритма. Теорема о достаточных условиях сходимости.
- •34. Метод Зейделя как ускорение метода Якоби. Организация алгоритма. Теорема об условиях сходимости.
- •35. Метод последовательной верхней релаксации. Задача выбора ускоряющего множителя.
- •36. Численное дифференцирование на основе интерполяции.
- •37. Численное дифференцирование на равномерной сетке, основанное на тэйлоровском разложении. Теорема об аппроксимации первой и второй производной.
- •38. Задача Коши. Постановка задачи. Сведение к системе для уравнения n-ого порядка.
- •39. Метод Эйлера. Алгоритм, геометрическая интерпретация, порядок точности.
- •40. Методы Рунге-Кутты повышенной точности. Метод «предиктор-корректор» и метод «средней точки».
- •41. Общая постановка краевой задачи для решения оду второго порядка. Классификация граничных условий.
- •42. Метод «стрельбы» решения краевой задачи с граничными условиями первого рода.
- •43. Метод конечных разностей решения линейной краевой задачи для оду второго порядка.
- •44. Каноническая разностная схема для линейного оду второго порядка, имеющая порядок аппроксимации .
- •45. Устойчивость разностных схем. Спектральный признак устойчивости для уравнений с постоянными коэффициентами. Примеры для оду и уравнений в частных производных.
33. Метод Якоби. Организация алгоритма. Теорема о достаточных условиях сходимости.
В этом методе приведение системы (23) к виду (27) осуществляется с помощью представления матрицы А в виде:
|
(34) |
где
D - диагональная матрица, CL- строго нижняя (lower) треугольная матрица,
CU- строго верхняя (upper) треугольная матрица.
Подставляя представление (34) в систему (23) Ax=b, получаем:
Dx=(CL+CU)x+b,
откуда следует
,
где матрица перехода имеет вид:
,
,
–
матрица
расщепления.
Получаемый при
этом итерационный метод называется
методом
Якоби.
Необходимое условие сходимости:
(иначе не существует
).
Достаточные условия сходимости устанавливаются в следующей теореме:
Теорема 3.10. (О сходимости метода Якоби). Пусть матрица - вещественная и удовлетворяет условиям:
|
|
|
(35) |
(Условия (35) называются условиями строгого диагонального преобладания). Тогда метод Якоби сходится.
Условие (35) можно
записать в виде:
,
что эквивалентно
условию
.
(36)
Поскольку то матрица перехода приобретает вид:
,
.
Воспользуемся строчной нормой матрицы . Согласно (36):
,
и, таким образом, выполняется условие сжатости для данной нормы. Следовательно, метод Якоби сходится в строчной норме. Но поскольку. в все согласованные матричные нормы эквивалентны, то метод Якоби сходится.
Замечание.
Достаточным условием сходимости метода
Якоби является также спектральное
условие:
.
34. Метод Зейделя как ускорение метода Якоби. Организация алгоритма. Теорема об условиях сходимости.
Метод Якоби может быть оптимизирован следующим образом. Как и в методе Якоби воспользуемся разложением матрицы
, |
|
и запишем систему
в виде:
|
(11) (37) |
Обозначим
и подставим в (37):
|
(12) (38) |
Нетрудно убедиться, что при покомпонентной записи уравнения (38):
вектор
содержит только первые (i-1)
компоненты вектора х,
а вектор
- содержит
компоненты, начиная с (xi+1),
т.е.
|
(13) (39) |
При реализации
метода последовательных приближений
для решения системы (39) естественно
использовать в правой части уже найденные
значения компонент
,
полученные в текущей итерации. Алгоритм
Гаусса-Зейделя строится следующим
образом:
|
(14) (40) |
Условия сходимости метода Гаусса-Зейделя (40) те же, что и у метода Якоби, но процедура сходится несколько быстрее.
35. Метод последовательной верхней релаксации. Задача выбора ускоряющего множителя.
Дальнейшее ускорение сходимости метода Зейделя может быть достигнуто с помощью введения ускоряющего множителя подобно тому, как это сделано в методе Ричардсона. Получающийся при этом алгоритм носит название метод последовательной верхней релаксации и реализуется в два этапа:
|
(15) (41) |
где
- ускоряющий множитель (параметр
релаксации).
Доказано (см.
например, [1]), что, если матрица
симметрическая и положительно
определенная, и
,
то итерационная процедура (41) сходится,
причем существует такое оптимальное
значение параметра
,
при котором достигается максимальное
ускорение.